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ABSTRACT
     This paper presents a novel kind of speech feature
which is the modified Mellin transform of the log-spectrum of
the speech signal (short for MMTLS). Because of the scale
invariance property of the modified Mellin transform, the new
feature is insensitive to the variation of the vocal tract length
among individual speakers, and thus it is more appropriate for
speaker-independent speech recognition than the popular used
cepstrum. The preliminary experiments show that the
performance of the MMTLS-based method is much better in
comparison with those of the LPC- and MFC-based methods.
Moreover, the error rate of this method is very consistent for
different outlier speakers.

1. INTRODUCTION

One major source of interspeaker variability in speaker-
independent speech recognition is the variation of the vocal
tract shape, especially the vocal tract length (VTL) among
individually speakers. If we assume a uniform tube with
length L for the model of the vocal tract, then the formant
frequencies of utterances of a given sound are proportional to

L1  [9]. Since the VTL can vary from appropriately 13cm for

females to over 18cm for males, formant center frequencies
can vary by as much as 25% between speakers [7]. This
source of variability results in state-of-the-art speaker-
independent speech recognizers working poorly for outlier
speakers whose vocal tract shapes differ significantly from
those of speakers in the training set.

If )(ωS  is the spectrum of the original clean speech

signal, )(ωS is the product of the glottal excitation spectrum

)(ωE , the vocal tract response )(ωV , and the radiation

effect )(ωR ,

)()()()( ωωωω RVES =                  (1)

By taking into account of the effect of the channel
distortion )(ωH  and the ambient noise )(ωN , the received

signal )(ωY  is modeled as

)]()()()()[()( ωωωωωω NRVEHY +=     (2)

Assuming that the model of the vocal tract is a uniform
lossless tube with length L, the vocal tract response is
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Where C is the speed of the sound in the air.
Set CL=α , (3) can be written as
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More clearly, we rewrite (4) as
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From the above equation, one can see that the effect of the
vocal tract length variation between speakers is a linear
scaling of frequency. Correspondingly, the received signal for
different speakers can be remodeled as

)]()()(')()[()( ωωαωωωω NRVEHY +=    (6)

In an effort to reduce the degradation in speech
recognition performance caused by variation in the VTL
among speakers, a series of frequency warping (FWP)
approaches to speaker normalization [4][6][8][10] have been
investigated. The aim is, in the final analysis, to estimate a
frequency scaling factor α  in (6) and then warp the frequency
axis during the front-end processing, to make speech (or its
feature) from all speakers appear as if it was produced by a
vocal tract of a single standard length. The efficiency of this
category of speaker adaptation approaches depends on the
accuracy of the estimation of the warping factor and the
implementation of the frequency scaling in the speech
parameterization.

We have used the FWP to improve the performance of
our speaker-independent speech recognizer. However, we find
that, for some outlier speakers, the FWP can not reduce the
error rates. The same results have been reported in [10]. The
reason may be that, due to the influence of the noise and the
interference, and the fact that the warping factor is context-
dependent, it is impossible to find an accurate warping factor
for each utterances of the speaker. Then questions arise, does
there exist a feature of speech signal which is invariant to the
variation of the VTL among different speakers?

The answer to above question is definite. This paper
present a novel kind of speech feature which is based on the
Fourier transform and the Mellin transform. Due to the scale
invariance property of the Mellin transform, the new feature is
insensitive to the scaling of the frequency, in other words, the
new feature is insensitive to the variation of the VTL, it needs
the FWP no longer. Hence it is more appropriate for speaker-
independent speech recognition than the conventional
cepstrum. Preliminary experimental results show that, using
the new feature, compared with using the MFC, the average
word error rate of our SI recognizer for outlier speakers is
reduced about 26.2%, while the standard deviation (the square
root of the variance) of the error rate is reduced about 64%.

The remainder of this paper is arranged as follows: In
section 2, the definition and the property of the Mellin
transform are introduced. And the implementation of Mellin
transform is described in section 3. In section 4, the algorithm
of the new feature is presented. Section 5 presents some
experimental results on our speaker-independent speech



recognizer. And some important conclusions are presented in
section 6.

2. THE MELLIN T RANSFORM

 For the past decades, the Mellin transform has received
considerable attention from the optical image processing [2],
radar and sonar signal processing and target classification
[3][11]. The utility of the Mellin transform in those
applications derives from its scale invariance property. In this
section, the definition of the Mellin transform and the
modified Mellin transform are reviewed, and the scale
invariance property is shown.

 Given a function )(tf , 0≥t , the Mellin transform

of )(tf  is generally defined by the relation [5]

 ∫
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0
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 Suppose that there exist two functions,)(tf , 0≥t and )(tg ,

0≥t , and they satisfy )()( ktgtf = , where k is a non-zero

constant, it can be proven that the magnitude of the Mellin
transform of both function are strictly equal. Actually,
applying (7) gives
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 Substituting ωjS −=  and noting that sk− = )lnexp( kjω−

=1, then
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 The above example indicates that the Mellin transform is
scale invariant.

 The Mellin transform has low-pass filtering character
[11] which make the Mellin transform unsuitable for the
speech recognition purpose. However, the low-pass filtering
character of the Mellin transform can be compensated by
simply multiplying the s  factor on both sides of (7). The
resulting transform is referred as the modified Mellin
transform (MMT) which is mainly concerned in this paper.
The MMT of the function )(tf  is defined as

 ∫
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Obviously, the modified Mellin transform also has the
property of scale invariance. This property is very useful for
extracting speaker-independent speech feature. For speakers
with different VTL, the received signal is modeled as (6). If
ignoring the effect of noise, (6) can be rewritten as

)()(')()()( ωαωωωω RVEHY =            (12)

The corresponding log-spectrum is
)(log)('log)(log)(log)(log ωαωωωω RVEHY +++=  (13)

Taking into account of the scale invariance property of the

MMT,

))(log)('log)(log)((log))((log ωαωωωω RVEHMYM MM +++=

))((log))('(log))((log))((log ωαωωω RMVMEMHM MMMM +++=

))((log))('(log))((log))((log ωωωω RMVMEMHM MMMM +++=   (14)

 (14) indicates that the MMT of the log-spectrum is free from
the factor α , and hence insensitive to the variance of VTL.
 

 3. IMPLEMENTATION

 Introducing an exponential distortion of the independent

variable, ηTet = , where T is a non-zero constant, the (7) can
be rewritten as

 ∫
∞

∞−
= ηηη deTefTsM ss )()(         (15)

 Setting ωjs −= and noting that ωjT −  is unity, the

magnitude of )( ωjM −  is the magnitude of the Fourier

transform of the exponentially distorted function. Hence, the
fast Fourier transform operation can be used to implement the
Mellin transform [1]. This discrete implementation of the
Mellin transform is called fast Mellin transform (FMT). A
diagram illustrating the steps in the FMT implementation is
shown in Fig. 1.

       Signal

                  Sampling

Exponential re-sampling

                    FFT

                  Amplitude

    FMT

 Fig. 1 The fast Mellin Transform

 In our study, we find that the exponential re-sampling
will introduce additional components in speech signal and will
accentuate the low frequencies, which makes the FMT
unsuitable for speech recognition. This paper will be
concentrated on another discrete implementation called the
direct Mellin transform (DMT) [11].

 Expanding (7) using an integration step size of T gives
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 Supposing )(tf  is constant in any T  interval, then the

subintegrals are readily evaluated,
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 Multiplying factor s  on both sides of (17) and defining
 kfkTf =)(   for Nk ,,1,0 �=            (18)

 (17) is expressed as

      ∑
−

=
− −=

1

1
1 ][)()(

N

k
kk

s ffkTssM 1)( −+ N
s fNT    (19)

 By defining the incremental variable
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 Substituting ωjs −= ,
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 For discrete computation, The DMT operation is more clearly
expressed in matrix form
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 Where
 ))ln(sin())ln(cos( kTjkT iiik ωωϕ −=        (24)

 And
  Pii /2πω =                             (25)

 is the normalized frequency, Pi ,,1�= , Nk ,,1�= , and

P  is the order of the DMT.
 By taking into account of the definition of the modified

Mellin transform, the magnitude of the modified direct Mellin
transform (MDMT) is
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5. THE PROCEDUR OF THE NEW FEATURE

In this section, A new kind of speech feature is proposed.
The procedure of the feature is shown in Fig. 2.

Fig.2 The procedure of MMTLS

The input of the procedure is the speech signal. The
preprocessing stage includes segmenting the sampled discrete
speech data sequence into frames, windowing the data to get
good spectral estimation and pre-emphasizing the data to
compensate for the attenuation caused by the radiation from
the lips. The required spectral estimates is computed via the
fast Fourier transform. The log operation is applied to the
magnitude of spectrum which has been revealed to have at
least two effects, one is for compressing the dynamic range of
the spectrum, and another is to change the multiplicative
components in the Fourier spectral domain into additive in the
log-spectral domain. Then the modified Mellin Transform of
the log-spectrum is implemented by MDMT operation
described in section 3. And finally, the discrete cosine
transform (DCT) is used to decorrelate the Mellin spectrum to
allow the subsequent statistical model to use diagonal matrix,
and it also has the effect of compressing the Mellin spectrum
into lower-order coefficients. Actually, the new feature is the
modified Mellin transform of the log-spectrum, and thus it is
short for MMTLS. In many cases, the dynamic features such
as differentials are required for improving the recognition rate.
As will discussed in the next section, the first differentials is
used in our recognizer and it is calculated directly by
subtracting the two preceding from the two following vectors
of MMTLS.

6. EXPERIMENTS

Experiments have been performed to evaluate the
performance of our speaker-independent speech recognizer by
using the MMTLS as acoustical feature. For the purpose of
comparison, the testing results on the MFC and LPC are also
presented.

The database used is spoken in mandarin. It consists of
174 isolated Chinese words spoken by twenty three male
speakers. The data is originally recorded with a Creative 16-
bit Sound Blaster and a close-talking microphone and is
sampled at 16KHZ. The training set contains fifteen speakers
arbitrarily selected from the twenty three speakers . The rest
eight speakers are retained for testing.

The speech recognizer is a speaker-independent one
which is based on continuous density HMM using whole word
models. Models are left-to-right with no skip state transition.
Eight states are used for each model and the training iterations
begin with uniformly probabilistic model.

Three kinds of acoustic features are selected in the
experiment:

LPC: 12 LPCs plus 12 delta LPCs to construct acoustic feature
vectors of 24 components.

MFC: 12 MFCCs plus 12 delta MFCCs to construct acoustic
feature vectors of 24 components.

MMTLS: 12 MMTLSs plus 12 delta MMTLSs to construct
acoustic feature vectors of 24 components.

Table 1 contains the word error rates of the LPC-, MFC-
and MMTLS-based methods for different speakers in the test
set. The average and the standard deviation (the square root of
the variance) of the word error rates are also given.



     Error rate
Speaker

LPC MFC MMTLS

Qwang 2.9% 1.9% 2.3%
Renweimin 21.3% 6.3% 4.0%

Shishi 6.3% 1.9% 1.9%
Stone 20.0% 4% 2.9%
Stong 26.9% 8.6% 4.6%

Chenxilin 7.5% 1.9% 2.3%
Bxiao 11.5% 2.3% 2.9%
Tchen 20.1% 6.9% 4.0%

Average 14.6% 4.2% 3.1%
standard
deviation

8.1% 2.5% 0.9%

Table 1. The word error rate for different speaker

We can see that: (1) The MMTLS-based method is the
best one among the three methods investigated. The average
word error rate for the LPC- and MFC-based approaches are
14.6% and 4.2 accordingly. The use of MMTLS decreases the
average word error rate to 3.1%. The error reductions are
78.8% and 26.2% respectively.  (2) The MMTLS-based
method is not consistently better than the MFC-based one for
all speakers. For some speakers (Qwang, Shishi, Chenxilin),
The MFC can obtain good recognition results. However, the
standard deviation of the word error rate of the MFC is almost
two times greater than that of the MMTLS. The reason may be
that, the MFC, so far the most effective acoustic feature used
in the speech recognition, is sensitive to the variation of the
VTL among speakers. When the VTL of the test speaker
approaches to that of someone in the training set, the
recognition rate is high, or vice versa. However, due to the
scale invariance property of the Mellin transform, the
MMTLS is insensitive to the variance of the VTL among
different speakers. Hence, the word error rates of the
MMTLS-based method for different speakers vary slightly. (3)
the LPC-based method is the worst one among the three
methods. And the word error rates for the LPC-based method
fluctuated greatly for different speakers.

6. CONCLUSION
 A new kind of acoustic feature called MMTLS which

is based on the Fourier transform and the modified Mellin
transform is presented in the paper. Because of the scale
invariance property of the Mellin transform, the new feature is
insensitive to the variance of VTL among different speakers.
The preliminary experimental results based on our speaker-
independent isolated-word recognizer show that, the
performance of the MMTLS-based method for different outlier
speakers is the best one among the three methods presented
and it is more consistent in comparison with those of the
MFC- and LPC-based methods.
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