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ABSTRACT

Time delay estimation (TDE) has been a research topic of sig-
nificant practical importance in many fields. It is the first stage
that feeds into subsequent processing blocks of a multiple-channel
system for identifying, localizing, and tracking radiating sources.
Various TDE algorithms were developed in the past few decades,
and their performance was assessed independently of each other
when each algorithm was developed. This paper is to provide a
comparative study to illustrate the performance differences among
several representative TDE algorithms in room acoustic environ-
ments where reverberation, noise, and interference are commonly
encountered.

1. PROBLEM FORMULATION

The goal of time delay estimation is to measure the relative time
difference of arrival (TDOA) among signals received by spatially
separated sensors. Two signal models have been widely adopted
for describing the TDE problem, i.e., the single-path propagation
model and the reverberant model. The first one assumes that the
signal acquired by each receiver is a delayed and attenuated ver-
sion of the original source signal. Suppose that we have an array
of receivers, the received signals are expressed as:

(1)

where , , are the attenuation factors
due to propagation effects, is the propagation time from the un-
known source to Sensor 0, is an additive noise signal at
the th microphone, is the relative delay between Microphones
0 and 1, and is the relative delay between Microphones 0
and , with and . For ,
the function depends generally not only on but also on the
microphone array geometry. For example, in the far-field case
(plane wave propagation), for a linear and equispaced array, we
have , and for a linear but non-equispaced array, we
have , where is the distance between
Microphones and , . In the near-field
case, depends also on the position of the source. Also note that

can be a nonlinear function of for a nonlinear array ge-
ometry, even in the far-field case (e.g., 3 equilateral sensors). In
general is not known, but the geometry of the array is known
such that the mathematical formulation of is well defined or
given. It is further assumed that is a zero-mean Gaussian
random process that is uncorrelated with and the noise signals
at other sensors. For this model, the TDE problem is formulated
to determine an estimate of the true time delay using a finite
set of observation samples.

In many application scenarios such room acoustic environ-
ments, however, each sensor receives, in addition to the direct-
path signal, multiple delayed and attenuated replicas of the source
signal due to reflections of the wavefront from boundaries and ob-
jects. Taking into account this so-called multipath effect, a rever-

berant model was developed recently [1], where an FIR filter is
used to model the channel between the source and each receiver.
The received signals are expressed as

h s (2)

where

h

s

and is the length of the longest channel impulse responses
among channels.

As seen, no time delay is explicitly expressed in (2), hence
there is no plain solution to the TDE problem for the reverber-
ant model, unless the channel impulse responses can be accurately
(and blindly) identified, which is a very challenging problem.

2. TDE ALGORITHMS

Various TDE algorithms were developed in the literature. In this
section, we brief some critical techniques.

2.1. Generalized Cross-Correlation Method
The generalized cross-correlation (GCC) method, which is devel-
oped by Knapp and Carter [2], is perhaps the most popular TDE
algorithm thus far [2]. It does not only unify various correlation
based algorithms into a general framework, but also provide a
mechanism to incorporate knowledge to improve performance of
TDE. In this framework, the delay estimate is obtained as

GCC GCC (3)

where

GCC

is the generalized cross-correlation function (GCCF),
is the cross spectrum, and stand re-

spectively for the mathematical expectation and the complex con-
jugate operator, is the discrete Fourier transform (DFT) of

, is a weighting function (sometimes called a prefilter),
and is the length of DFT.

There are a number of member algorithms in the GCC family
depending on how the weighting function is selected. Com-
monly used weighting functions include the constant weighting [in
this case, the GCC becomes a frequency-domain implementation
of the traditional cross-correlation (CC) method], the phase trans-
form (PHAT), the maximum likelihood (ML) processor [2], etc.
Different weighting functions possesses different properties, as for
example the PHAT algorithm where PHAT .
Substituting PHAT into (3) and neglecting noise effects, one can
readily deduce that the weighted cross spectrum is free from the
source signal and depends only on the channel responses. Con-
sequently the PHAT algorithm performs more consistently than
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many other GCC members when the characteristics of the source
signal change over time. It is also observed that the PHAT al-
gorithm is more immune to reverberation than many other cross
correlation based methods. Another example is the ML processor
with which the delay estimate obtained in the single-path propa-
gation situation is optimal from a statistical point of view since
the estimation variance can achieve the Cramèr-Rao lower bound
(CRLB). It should be pointed out that in order for the ML proces-
sor to achieve the optimal performance, the spectra of noise signals
have to be known a priori. In real applications, this information is
not accessible, and can only be estimated. The ML algorithm then
becomes suboptimal, like other GCC members.

2.2. LMS-Type Adaptive TDE Algorithm
This method, also based on the ideal propagation model with two
sensors, was proposed by Reed et al in 1981 [3]. Different from the
cross-correlation based approaches, this algorithm achieves time
delay by minimizing the mean-square error between and a
filtered (FIR filter) version of , and the delay estimate is ob-
tained as the lag time associated with the largest component of the
FIR filter. If we define a signal vector of at time instant as

x max max

max (4)

and an FIR filter of length max as

h max (5)

where again max is the maximum possible time delay, then an error
signal can be formulated as

h x (6)

An estimate of h can be achieved by minimizing us-
ing either a batch or an adaptive algorithm. For example, with
the least-mean-square (LMS) adaptive algorithm, h can be esti-
mated through

h h x (7)

where is a small positive adaptation step size. Given this esti-
mate of h , the delay estimate can be determined as

LMS max (8)

Other adaptive algorithms [4] can also be used, which may lead to
a better performance.

2.3. Fusion Algorithm Based on Multiple Sensor Pairs
The GCC framework, which can yield reasonable TDE perfor-
mance in nonreverberant and moderate noisy environments, suf-
fers significant performance degradation in the presence of rever-
beration. Much attention has been paid to improving the tolerance
of TDE against noise and reverberation. Besides using some a pri-
ori knowledge about the distortion sources, another way of com-
bating noise and reverberation is through exploiting the redundant
information provided by multiple sensors. To illustrate the redun-
dancy, let us consider a three-sensor linear array, which can be
partitioned into three sensor pairs. Three delay measurements can
then be acquired with the observation data, i.e., (TDOA be-
tween Sensor 0 and Sensor 1), (TDOA between Sensor 1 and
Sensor 2), and (TDOA between Sensor 0 and Sensor 2). Ap-
parently, these three delays are not independent. As a matter of
fact, if the source is located in the far field, it is easily seen that

. Such a relation was exploited in [5] to formu-
late a two-stage TDE algorithm. In the preprocessing stage, three
delay measurements were measured independently using the GCC
method. A state equation was then formed and the Kalman filter

is used in the post-processing stage to enhance the delay estimate
of and . It was shown that in the far-filed case, the es-
timation variance of can be reduced by a factor of 6 in low
SNR ( ), and of 4 in high SNR ( ) condi-
tions. More recently, several approaches based on multiple sensor
pairs was developed to deal with the TDE in room acoustic envi-
ronments [6], [7], [8]. Different from the Kalman filter method,
these approaches fuse the estimation cost functions from multiple
sensors pairs before searching the time delay. We shall call such
a scheme as information fusion based algorithm. In general, the
problem of TDE with the fusion algorithm can be formulated as

FUSION (9)

where is the total number of sensor pairs, represents
some delay cost function measured from the th sensor pair (it
can be CCF, GCCF, etc), and denotes some mathematical
transformation, which ensures that the cost functions ( ) for
all the sensor pairs, after transformation, have their peaks due
to the same source in the same location. Various methods can be
formulated by selecting a different or . For example, if
all sensor pairs are centered around a same position, by choosing

, as the GCCF from the PHAT algorithm, one can
readily derive the so-called synchronous adding method in [6]. We
can also easily derive the consistency method in [7] and the SRP
(steered response power)-PHAT algorithm in [8].

2.4. Multichannel Cross-Correlation Algorithm
Recently, a squared multichannel cross-correlation coefficient
(MCCC) was derived from the theory of spatial interpolation [9].
Consider the signal model given in (1) with a total of sensors.
At time instant , the MCCC is defined as :

R (10)

where “det” stands for determinant of a matrix,

R ...
. . .

. . .
...

(11)
is the normalized signal covariance matrix,

(12)

is the cross-correlation coefficient between and ,

(13)

and .
Just like the cross-correlation coefficient between two signals,

this definition of cross correlation among multiple channels pos-
sesses quite a few good properties, and can be treated as a natural
generalization of the traditional cross-correlation coefficient to the
multichannel case. The problem of TDE at time instant , based
on this new definition, can be formulated as

MCCC

R (14)

For two-sensor case, it can be easily checked that this method
is same as the cross-correlation method. When we have more than
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two sensors, this method can be viewed as a natural generalization
of the cross-correlation method to the multichannel case, which
can take advantage of the redundancy among multiple sensors to
improve the time delay estimate between two sensors. It is worth
to mention that a prewhitening process can be applied to the ob-
servation signals before delay estimation. In this case, the MCCC
algorithm can be treated as a generalized version of the PHAT al-
gorithm.

2.5. Adaptive Eigenvalue Decomposition Algorithm
All the algorithms outlined in the previous sections are derived
from the single-path propagation model. Recently, an adaptive
eigenvalue decomposition (AED) algorithm was proposed to deal
with TDE in room reverberant environment [1]. This algorithm
first identifies the channel impulse responses from the source to the
two sensors (h and h ). The delay estimate is then determined by
finding the direct paths from the two measured impulse responses.
In brief, at time instant , the channel impulse response vector
u h h is estimated as the eigenvector of the covari-
ance matrix R associated with the smallest eigenvalue, where
R x x . In an adaptive way, u can be estimated via

u
u x
u x

(15)

with the constraint that u , where

u x (16)

is an error signal, denotes the norm of a vector or matrix,
and , the adaptation step, is a positive constant.

With the identified impulse responses and , the time de-
lay estimate is determined as the difference between two direct
paths, i.e.,

AED (17)

where computes the largest element.

2.6. Adaptive Multichannel Time Delay Estimation
In the AED algorithm, the delay estimate is obtained by blindly
identifying two channel impulse responses. It requires that the two
channels do not share any common zeros, which is usually true for
systems with short impulse responses. In many application sce-
narios such as room acoustic environments, however, the channel
impulse response from the source to the microphone sensor could
be very long. As a result, the likelihood for two impulse responses
not sharing common zeros tends to be low and the AED algorithm
often fails when a zero is shared between two channels or some
zeros of the two channels are close. One way to overcome this
problem is to employ more channels in the system, since it would
be less likely for all channels to share a common zero when the
number of sensors is large. This idea leads to an adaptive multi-
channel (AMC) time delay estimation approach based on a blind
channel identification technique [10].

Considering the reverberant model in (2), we can define a cost
function among all the channels, at time instant , as

(18)

where

h h

h

(19)

is an error signal between Sensor and Sensor at time ,
h is the modeling filter of h , and

h h h h (20)

It follows immediately that various adaptive algorithms can be
used to estimate the channel impulse responses. For example, a
multichannel LMS (MCLMS) algorithm and a normalized mul-
tichannel frequency-domain LMS (NMCFLMS) algorithm were
developed [10] to estimate h by minimizing . While the
former performs estimation in the time domain, the latter operates
in the frequency domain on a block-by-block basis, which enables
a faster convergence rate. We will adopt the NMCFLMS algorithm
in our experiment. Once h is achieved, time delay between the th
and th sensors is determined as

(21)

3. EXPERIMENTS

In an attempt to simulate real reverberant acoustic environments,
the image model technology [11] is used. We consider a rectan-
gular room of size inches . A point
omnidirectional source is located at (100, 100, 40). A linear ar-
ray which consists of four (4) ideal point microphones is placed in
parallel with the x-axis. Four microphones are located at (20, 10,
40), (28, 10, 40), (36, 10, 40), and (44, 10, 40), respectively. The
directivity pattern of each microphone is assumed to be omnidi-
rectional.

A low-pass sampled version of the impulse response of the
acoustic transmission channel between the source and each micro-
phone is generated using the image method. A speech signal from
a female speaker, digitized with 16-bit resolution at 16 kHz, is then
convolved with the synthetic impulse responses. Finally, mutually
independent white Gaussian noise is properly scaled and added to
each microphone signal to control the SNR.

Delay estimates were obtained on a frame-by-frame basis. The
frame size used in all experiments is 64 ms. To reduce the tempo-
ral effect of noise on TDE performance, the cost function of each
algorithm is smoothed using a single-pole recursion as follows:

(22)

where denotes the cost function estimated using the th frame
of observation data, is a smoothed version of the cost function,
based on which the delay estimates were obtained. For the MCCC
algorithm, the signal was prewhitened before computing the cost
function. Therefore, this method, in the case of two sensors, is
equivalent to the PHAT algorithm. For the ML method, we assume
that the noise spectrum is know a priori. The fusion algorithm
implemented here is the consistency method presented in [7]).

It is not always easy to compare fairly different algorithms. In
our experiments, we optimized each individual algorithm in a non-
reverberant and favorable noisy ( ) environment to
its best performance. We then test and compare all the algorithms
in reverberation and different noise conditions. Such a process
should, in generally, not favor any specific algorithm.

Several experiments were performed. Due to space limita-
tions, we present one set of results, as shown in Fig. 1, where

. It can be seen that, in the first environment, all
the algorithms can accurately identify the time delay. When re-
verberation time is increased to 580 ms, both the CC and the ML
methods suffer significant performance degradation, showing that
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these two approaches are sensitive to reverberation. The PHAT al-
gorithm, though also belongs to the GCC family like the CC and
ML methods, still yields a reasonable performance, implying its
robustness with respect to reverberation. Among the five tech-
niques that use two sensors (i.e., CC, PHAT, ML, AED, LMS),
the AED algorithm delivers the best performance. This indicates
that taking it into account in the signal model is an effective way
in dealing with reverberation. Comparing the MCCC, AMC, and
fusion algorithms with dual-sensor techniques, one can easily see
the advantage of using multiple sensors. Since the AMC algorithm
was formulated from the reverberant signal model and using mul-
tiple sensors, it is not surprising to see that it achieves the best
performance in this strong reverberant environment.

4. SUMMARY

This paper presented a comparative study of TDE techniques in ad-
verse environments. Broadly, the studied techniques can be classi-
fied into two categories: cross-correlation based methods and sys-
tem identification based approaches. Both categories can be imple-
mented either based on two sensors, or using multiple sensors. We
evaluated eight algorithms, including five dual-channel techniques
and three multiple-channel techniques, in both reverberant and
noisy environments. Among the five studied dual-channel tech-
niques, the adaptive eigenvalue decomposition algorithm demon-
strated the best performance in both noise and reverberation condi-
tions, showing its great potential for real applications. In general,
more sensors will lead to a higher robustness because of the redun-
dancy. However, it should be pointed out that attention has to be
paid to implementing the multichannel cross-correlation algorithm
and the fusion method. Both need to synchronize either the signals
observed at different sensors, or the cost functions from different
sensor pairs. In case that the true delay is not integral multiple of
the sampling rate, we will have to either increase the sampling rate
or use interpolation, which may significantly increase the compu-
tational complexity. In case that the observation signals or the cost
functions are not properly aligned, we may not achieve much im-
provement.
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Fig. 1. TDE performances in moderate noisy and reverberant environ-
ments, where , and , and respec-
tively.
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