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�: Université du Québec, INRS-EMT �: Bell Labs, Lucent Technologies
800 de la Gauchetière Ouest, Suite 6900 600 Mountain Avenue
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ABSTRACT
The Capon spectrum, which is known to have better resolution than
the periodogram, has been widely used in various applications. Nor-
mally, the Capon spectrum is estimated through the direct compu-
tation of the inverse of the data correlation (or covariance) matrix.
This so-called direct inverse approach is, however, computationally
very expensive due to the high computational cost involved in the
matrix inversion. This paper deals with fast and ef cient algorithms
in computing the Capon spectrum. Inspired from the recursive idea
established in the area of adaptive signal processing, we rst derive a
recursive Capon algorithm. This new algorithm does not require an
explicit matrix inversion, and hence is more ef cient to implement
than the direct inverse method. We then develop a fast version of the
recursive algorithm, which can further reduce the complexity of the
recursive one by an order of magnitude.

Index Terms— Capon, MVDR, Spectral Estimation, Recursive
Least Squares, Linear Prediction.

1. INTRODUCTION

Spectral estimation, which endeavors to determine the spectral con-
tent of a signal from a nite set of measurements, plays a critical role
in various applications. This problem has attracted a considerable
amount of research attention over the last century [1], [2]. Among
the numerous techniques that were developed, the Capon method can
be considered as one of the most fundamental approaches, which is
known to have better resolution than the periodogram and thus has
been widely adopted for many applications.

Brie y, the Capon method for spectral estimation is based on a
lterbank decomposition: the spectrum of a signal is estimated in

each band by a simple lter design subject to some constraints [3],
[4]. Let ���� be a zero-mean random process with a power spectral
density (PSD) ������, where � �� � � � ��� is the angular fre-
quency. Suppose that we want to design a nite impulse response
(FIR) lter that passes the frequency �� in ���� without distortion,
and meanwhile, attenuates all the other frequencies as much as pos-
sible. This will lead to the well-known Capon lter, which is math-
ematically written as

�
�����

� � ���	
�
��

�
�
�������

�
�
� ���	
�

��

�
�
� ����� (1)

subject to �
�
� �� � �	

where �����, 
 � �	 �	 � � � 	 � � �, is the output of the FIR lter,
��� � �

�
���������

�
is the covariance matrix of ����,

�� �
�
���� ���� � � � ������

��
	

���� �
�
���� ���� �� � � � ���� 
 
 ��

��
	

�� �
�
� �������� � � � ������
 � �����

��
	

� and � denote, respectively, the transpose and conjugate transpose,
and �� � ��
��.

The solution to above optimization problem can be deduced as
(assuming that ����� exists) [3], [4]:
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The power of ���� in the passband of the Capon lter centered on
�� is easily written as:
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The spectrum ������ at frequency �� can then be determined as:
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where the factor � is added for properly scaling the Capon power es-
timator to obtain the spectral density. The scaling factor is typically
determined based on the lter bandwidth. It can be seen from (2)
that the Capon lter is data dependent, so the scaling factor may not
necessarily be data and frequency independent. Many methods have
been developed for determining the scaling factor �, and the most ac-
curate one is the method provided in [5]. However, since our focus in
this paper is on fast computation of Capon algorithm rather than the
Capon spectral estimator itself, we take the simplest method given
in [2] and set � � �, where � is the number of bandpass lters.
For a good detailed discussion on this issue, the reader is invited to
consult [5].

In practice, the covariance matrix��� has to be estimated. Sup-
pose that we replace the expectation operation by the exponentially
weighted sample average. We then have
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where � (� � � � �) is a forgetting factor. An estimate of the Capon
lter and spectrum at frequency �� and time � can then be written

as
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We deduce from (6) and (7) that:
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Taking into account all frequencies ��, � � �� �� � � � � � � �, we
can rewrite (8) into the following form:
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For � � 	, � is the Fourier matrix and ��� � �� so ��� �
�
�
�� . We then obtain the following interesting decomposition:
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2. A RECURSIVE COMPUTATION OF THE INVERSE
SPECTRUM

The estimation of the Capon spectrum using (7) and (10) requires
the computation of the inverse of the covariance matrix, which can
be computationally very expensive. The aim of this section is to
develop a recursion for the Capon algorithm so that the spectrum
can be estimated more ef ciently.

The covariance matrix of the signal 
��� can be computed re-
cursively,

������� � � ������� �� � ���������� (11)

By using the matrix inversion lemma [6], ������ ��� can also be com-
puted recursively:
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where
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is the a priori Kalman gain vector and
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The a posteriori Kalman gain vector 	��� � ����
�� ������� is related

to 	���� by [7]:

	��� � �������	����� (15)

Now, if we pre- and post-multiply both sides of (12) by ��� and ��
respectively and with the help of (7), we get:
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hence,
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Expression (17) shows how the inverse spectrum of the signal

��� at frequency �� and time � can be computed recursively, from
its value at time � � �, when a new data sample is available. The
recursive algorithm can be summarized as follows:

� At the beginning, initialize ����
�� ��� � 
��

� � (
� is the signal
energy), and ����

�� ���� �� � 	��
��� � ���
.

� When a new data sample is measured at time �, update 	����,
����, ����

�� ���, and ����� according to (13), (14), (12), and
(18), respectively.

� At time �, estimate the inverse spectrum according to (17).

From (17), we see that the estimation of the inverse Capon spec-
trum requires the computation of one inner product. The correspond-
ing complexity is proportional to �	. For � � 	, this complexity
is proportional to 	�, which is quite high for practical applications.
A natural question then arises: can we further reduce the number of
operations to make it linear with respect to 	? In the next section,
we will discuss an ef cient recursive Capon algorithm.

3. A FAST RECURSIVE ALGORITHM

In this section, we are going to show that the inner product
�	����� � ��� 	

���� can be computed recursively with a couple of
multiplications only at each iteration, instead of 	. As a result, the
complexity of the entire algorithm will be reduced signi cantly since
�	����� has to be evaluated � times for every time sample �.

3.1. A Fast Algorithm Based on Linear Prediction

It is well-known that the a priori Kalman gain vector of order 	��
can be computed in two different ways [7]:
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where ���� and 
��� are, respectively, the forward and backward
predictors of order 	, ����� and ����� are the a priori forward and
backward prediction error signals, and 
���� and 
���� are the
forward and backward prediction error energies.

Consider the following vector of length 	� �:
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If we pre-multiply both sides of (20) and (21) by ��
��, we obtain the
recursion:

�	����� � ����������	����� ���

�����


���� ��
���������	�� ������� ��
 �

�����


���� ��
�� � ���������������� ��
 � (22)

where

������� �� � �
�
� ���� ��� (23)

������� �� � �
�
� 
��� ��� (24)

III ­ 974



In order for (22) to be ef cient, (23) and (24) need to be computed
recursively. This can be easily done thanks to the update equations
of the forward and backward predictors:
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where the superscript � is the complex conjugate operator and
���� � ������. Now, if we pre-multiply both sides of (25) and
(26) by ��� , we deduce the two recursions:
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The two previous expressions should be used in (22). Therefore, the
inner product ������� can be estimated with roughly six complex
multiplications, instead of 
. To summarize, the fast recursive al-
gorithm estimates the inverse spectrum according to the following
iterative steps.

� At the beginning , initialize ����� � ���� � ���� � �,
���� � �, ����� � ��, ����� � ���
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� At time �, estimate ������ � ��, ������ � ��, �������, and
	���
�� �
�� �� according to (27), (28), (22), and (17), respec-

tively.

3.2. Complexity Analysis

Now let us compare the computational complexity of the direct-
inverse, the recursive, and the fast recursive Capon algorithms. Here
the computational complexity is evaluated in terms of the number
of real-valued multiplications/divisions required for the implemen-
tation of each algorithm. The number of additions/subtractions are
neglected because they are much quicker to compute in most generic
hardware platforms. We assume that complex-valued multiplica-
tions are transformed into real-valued multiplications. The multipli-
cation between a real and complex numbers requires 2 real-valued

multiplications. The multiplication between two complex numbers
needs 4 real-valued multiplications. The division between a complex
number and a real number requires 2 real-valued multiplications.

Suppose that the observation signal is real-valued and a spec-
tral estimate has to be made every � samples. The direct-inverse
approach achieves the spectral estimate in two steps. It rst com-
putes the signal correlation matrix according to (5). This step re-
quires ��
� � 
� multiplications. It then estimates the Capon
spectrum using (7). If we assume that the inverse of the correla-
tion matrix is computed through the LU decomposition, which re-
quires 
� � 
 multiplications, it is trivial to deduce the grand total,
for estimating the inverse spectrum by the direct-inverse method, of

� � �� � 
��
� � �� � �� � ��
�� multiplications.

For the recursive algorithm, the inverse spectrum depends on
the a priori Kalman gain vector �����, which can be computed
at each iteration, using linear prediction techniques. This step in-
volves ��
 � �
 multiplications. Equation (17), which requires
the calculation of one inner product, involves �

 � ��� mul-
tiplications for estimating the inverse spectra for all frequencies

�� � � �� �� � � � � ���. The total cost for� samples is, therefore,
��

� � ��
 � �� � �
� multiplications.

The fast recursive algorithm also requires the computation of
the a priori Kalman gain vector �����, which involves ��
 � �

multiplications. But this technique can estimate the inverse spec-
trum with only 
�� multiplications after knowing the Kalman
gain vector. The total complexity for � samples is, therefore,
����
 � �
 � 
���.

If we assume � � 
 � �, the computational complexities
for the direct-inverse, recursive, and fast recursive Capon algorithms
are, respectively, �
� �

�, 

� �
�
� ��

, and ��
� ��


multiplications. Since 
 is often in the order of a few tens or hun-
dreds of taps, we clearly see that the recursive algorithm is computa-
tionally less expensive than the direct-inverse approach and the fast
recursive algorithm is much more ef cient than both the recursive
and direct inverse approaches.

3.3. Discussion on the Bias Removal

Having discussed the complexity issue, we now examine the error-
propagation effect, another important problem that needs much at-
tention when any fast algorithm is developed.

From Section 3.1, we can see that the proposed fast algo-
rithm requires two initializations. One is for the inverse spectrum
[ 	���

�� �
�� ��]. The other is for the prediction error energies [�����
and �����, which are involved in the ef cient computation of the
Kalman gain vector], which in turn is used to estimate the inverse
spectrum. Both initializations depend on the energy (��) of the sig-
nal ����. Because of this interlink process and the fact that the two
initializations are not perfectly synchronized, one interesting phe-
nomenon appears during the update: a bias is introduced in the in-
verse spectrum estimation, which grows with the time index �. As
an example, we illustrate this phenomenon with a zero-mean white
Gaussian signal ���� with a variance of ��� � �, 
 � � � ���,
� � �����

�, and for � � ����. Figure 1 shows the estimates of
the inverse spectrum with the recursive [Fig. 1(a)] and fast recursive
[Fig. 1(b)] algorithms. We can notice that the two inverse spectra are
identical but the �-axis scale is different. This difference is due to the
bias. Therefore, inverting the estimate obtained with the fast recur-
sive algorithm will give a wrong result for the spectrum estimation
of the signal ����.

From the recursive expression of the inverse spectrum given in
(17), we have
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Fig. 1. Inverse spectrum of a white Gaussian signal with ��� � �,
� � � � ���, � � ��������, and � � ����: (a) Recursive algo-
rithm; (b) Fast recursive algorithm; and (c) Fast recursive algorithm
after bias removal.
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where 
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�. Continuing this recursion, we de-

duce that
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The rst term of the right hand side of the previous equation depends
on the initialization
��

� while the second term depends on
� when
computed with the fast algorithm (but it does not appear explicitly).
Now suppose that we initialize 
� with 
�, which satis es 
� �

�	Æ (where Æ is a small positive number and Æ � 
�). Replacing

� in (30) with 
� and using the approximation �
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�, we get the corresponding spectrum estimate,
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The term����� represents the bias which grows exponentially with
�. Expression (31) shows very clearly that even a very small mis-
match between
� and
� (or equivalently a very small Æ) will intro-
duce an avoidable bias. Obviously, a technique is needed to remove
it.

According to (31), we have:
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and ����� � �
�� 
����� ���	 ��. Taking into account the informa-
tion from the two previous expressions, the following simple itera-
tive algorithm
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with ����	 �� � �
�
�


����� ���	 �� � ��������, nds the bias with

less than 100 iterations. Let’s take again the example given at the
beginning of this subsection. Figure 1(c) shows the spectrum esti-
mated with the fast recursive algorithm after the bias was removed
with the proposed iterative method. From this example, it’s clear that
the obtained solution is quite satisfactory.

4. CONCLUSIONS

A signi cant amount of research attention has been devoted to the
estimation of the Capon spectrum. Most of the developed algo-
rithms thus far, however, rely on the direct computation of the in-
verse of the input correlation (or covariance) matrix. If the length of
the Capon lter is �, the complexity of the direct-inverse approach
is on the order of ��. Such a high computational load makes the
Capon algorithm dif cult to implement in applications like speech
communication where a spectral estimate has to be obtained every
few milliseconds. In this paper, we derived a recursive Capon algo-
rithm. This algorithm does not require an explicit matrix inversion,
and hence is more ef cient to implement than the direct-inverse ap-
proach. However, its complexity is still on the order of ��. In order
to further reduce the complexity and make the recursive Capon algo-
rithm more computationally ef cient, a fast version of the recursive
algorithm was developed, based on the techniques used in the fast
recursive least-squares adaptive algorithms. This new fast algorithm
can reduce the complexity by an order of magnitude.
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