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Abstract— A sensor fusion framework for characterizing the
signature of walking targets using data collected from pas-
sive acoustic and active ultrasound sensors is investigated. We
compute local estimates of the acoustic energy of the footsteps
and the velocity of the torso and limbs. A time-varying vector
autoregression (I'V-VAR) is used to model the evolution of these
signals, and captures the physical correlations between them,
creating a natural data fusion across different sensor modalities.
The signature is defined as a subset of the parameters from the
TV-VAR model, and the quality of this feature set is evaluated
using a support vector machine framework to classify multiple
test subjects for both detection and discrimination applications.

I. INTRODUCTION

The ability to detect moving humans is crucial in many
applications, ranging from building surveillance and
automotive safety systems, to situational awareness
enhancement in military applications. Video monitoring
and machine vision methods are among the best of current
approaches, but require careful calibration, ligh power,
high memory, high cost, and may require environments
with adequate lighting for effective use. On the other hand,
acoustic sensors are often cheaper, require less power and
data storage, can be operated in total darkness, and are rapidly
deployable, making them an appealing alternative. In this
paper, we ivestigate the use of passive and active acoustic
sensors to detect and 1dentify walking subjects.

It has been previously demonstrated that it 15 possible
to characterize the mamnifestation of human footsteps mn data
collected by passive acoustic (e.g., microphone) sensors. In
[6], a set of features is given, including the mel-cepstral
peak frequencies, walking interval period and the footstep
power spectral envelope. This work uses a single microphone,
and as a result the performance is sensitive to background
noise that may mask the sound of the footsteps. In [1], data
from both passive acoustic and seismic (e.g., accelerometer)
sensors are considered. Seismic sensors are robust to many
types of background interference, such as people talking or
street noise. When the seismic data are modeled using a
time-varying autoregressive (TVAR) model, features based
on the TVAR parameters form clusters corresponding to
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different positions of the walker’s foot (e.g., contact of heel
to ground). The temporal trajectories of these features are
periodic, with the period corresponding to the time between
successive footsteps. While the work in [1] considers two
different sensor modalities, the mformation from each sensor
is combined at the inferential, not feature, level. The use of
TVAR models to define acoustic signatures is also seen in [2],
where a scalar AR process is used to analyze the signature of
moving vehicles from passive acoustic sensors.

This paper addresses the limitations of these previous
approaches by fusing data from passive acoustic and active
ultrasound sensors, in order to find a robust characterization
of the signature of a walking subject. As described in Section
I, owr approach is based on jointly modeling a set of
signals derived from two different sensor modalities using a
time-varying vector autoregressive (TV-VAR) process. Details
relating to the data preprocessing and TV-VAR parameter
estimation are given in Section III. A subset of the TV-VAR
parameters are used to define the signature of a walker, and
this signature is evaluated through the use of a support vector
machine (SVM) based classification system, as described in
Section TV. Section V presents experimental results from
both detection and discrimination test scenarios, using two
representative test subjects.

II. PROBLEM STATEMENT AND MODEL

We consider the problem of defimng the signature of a
walking human using both passive and active acoustic
sensors. The data used in this analysis were collected at the
National Center for Physical Acoustics at the University of
Mississippi [5]. During the test scenario, the target walks
down a hallway containing co-located active ultrasound
and passive acoustic sensor devices, as shown in Figure 1.
While data are available for multiple human and animal test
subjects, this paper focuses on only two representative data
sets, corresponding to an adult male and a dog.

The passive sensor operates at a resonant frequency of
25 kHz, with a sampling frequency of 96 KHz. The signal
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Fig. 1. Experimental Setup at the National Center for Physical Acoustics,
University of Mississippi.

of interest, corresponding to the sound made by a foot upon
impact with the floor and subsequent friction created when
lifting the foot for next step, is found in the 20— 30 kHz band.
The active sensor operates at a resonant frequency of 40 kHz,
with a sampling frequency of 96 KHz. A continuous tone is
transmitted at f, = 40 kHz, and the return signal containing,
a Doppler shift, Af, induced by the walker is measured. Due
to the natural swaying of the torso and swinging of the limbs
while walking, coupled with the fact that all points within a
body segment do not move at a constant velocity, one expects
to see a band of Doppler shifts following a sinusoidal motion
in the spectrogram, as confirmed by Figure 2.

We model the state of the sysiem as consisting of two
variables representing the welocity of the target, and one
variable corresponding to the acoustic energy of the actual
footstep. Let the average velocity of the torso be dencted
as v;, the average velocity of the limbs as #;, and the total
energy of the footstep sound as e, so that the state at each
short-time segment is given by:

(1)

The state evolution is modeled as a second-order, time-varying
vector autoregressive (TV-VAR) process, defined by:

Xn = (wn] wn] e[n])T.

(2)

where the matrices A;,, encode the coupling between the 5%
lag of x,, with the current state vector. The additive noise term,
€, 18 assumed to be a zero-mean, Gaussian random variable,
with covariance ¥,,. The TV-VAR process is chosen in order
to capture both the autocorrelation within each signal, as well
as the cross-correlations among them. These correlations exist
due to the fact that when a person walks, the torso and limbs
do not move independently of one another, and this motion is
physically correlated with the rate and timing of the footsteps
captured by the passive sensor.

Xpn = Al,nxn—l + AZ,W)(n—Z + €y

ITI. DATA ANALYSIS AND MODEL ESTIMATION

Given w[n], v r, and e[n], the parameters of the TV-VAR
model defined in Equation 2 are estimated on a segment
by segment basis, using a sliding window of 50 samples of
X, with 50% overlap. For each segment, the parameters
{A1.. Az, 2, } are computed using the standard maximum
likelihood estimation procedure, as described in [3]. Given
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Fig. 2. Typical spectrogram of active sensor data for human test subject. A
single, continuous tone is transmitted, and the Doppler shift induced by the
walking target is measured.

these parameter estimates, the value of x,, at each short-time
frame is computed as described below.

The passive and active data are non-stationary due to
the motion of the subject and variable distance from the
sensors, but were found to be locally stationary over short-
time frames of 53 ms, motivating use of a short-time Fourer
analysis. The data from both sensors are appropriately
bandpass filtered, demodulated, and downsampled to 19.2
kHz. From the passive data, we compute e[n], the log of the
total energy, using 53 ms frames and 50% overlap, as:

efr] =log (Z |P (, fc)|) )
k

where P (n,k) is the Fourier transform of the passive signal
data over the n time window, in the k% frequency bin.
This operation preserves the periodic and impulsive nature of
the passive acoustic data, as shown in Figure 3 for typical data.

Envelopes of the torso and limb Doppler shifts in the
time-frequency plane are extracted from the data collected by
the active sensor. First, the average torso Doppler shift, A f;,
is computed using a combination of adaptive thresholding
and linear regression on the specirogram image. Specifically,
a bandpass filter is applied in order to restrict attention to the
area either strictly above or below the carrier, corresponding
to times when the target is moving towards or away from
the sensors. For each frame, a binary mask is created using
a thresholding algorithm, so that only the top percentile of
the spectrogram magnitude data per time frame are assigned
a weight of unity. The time-frequency bins that pass the
threshold test are used to fit a piecewise linear curve using
ordinary least squares regression. The slope of each line
segment iz computed over a window of five short-time
frames, and a contimiity constraint iz imposed so that the
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Fig. 3. Typical plot showing log of the total acoustic energy collected from
the passive sensor in the band of interest (20 — 30 kHz), using 53 ms frames
with 50% overlap.

ends of the line segments meet at the boundary between
neighboring segments. The results of applying this algorithm
on a represertative data sample is shown in Figure 4. An
estimate of the torso wvelocity, v:[n|, is computed from the
Doppler shift, Af[n], as
cAfiln]

2f. 7
where ¢ = 340 m/s is the speed of sound.

vin] =

3

Second, the average limb Doppler shift, Af;, iz estimated
by applying an edge detection algorithm to the spectrogram
image. Again, attention is restricted to the area either strictly
above or below the carrier However, rather than using
a relative threshold that changes frame to frame, a hard
threshold of —70 dB is enforced. For each frame, a single
boundary point is identified that represents either the smallest
(when looking below the carrier) or the largest (above the
carrier) frequency that meets the threshold requirement. The
resulting curve is shown in Figure 4, and the average limb
velocity, v;[n], is computed according to Equation 3.

IV. CLASSIFICATION
A. Support Vector Machine Based Classification

The quality of the TV-VAR based signature of a walking
subject is investigated through the implementation of two
classification systems. The first system detects the presence
of a walking subject against the null hypothesis of no target
present, while the second system discriminates among multiple
targets. Both classifiers are implemented using an SVM. The
SVM computes the optimal separating hyperplane to partition
two classes of data, by maximizing the distance of the training
points to the hyperplane. In the case where the data are not
linearly separable, the SVM allows for some of the training
points to be on the wrong side of the hyperplane through
the inclusion of slack variables. For a detailed description
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Fig. 4. Average torso (red) and limb (white) Doppler shifts, superimposed on
spectrogram computed from representative data collected from active sensor.

of SVM-based classification, see [4]. Here, all training data
are hand labeled as belonging to one of two classes and are
assigned a label of 41, corresponding to the target being
present or absent, respectively.

B. Feature Extraction

Once the TV-VAR parameters are estimated for each segment,
a set of N representative features must be selected, which
are used to train the classifier. Candidate features include
the eigenvalues of the state transition matrix, or individual
elements from the A; matrices. The features are selected so
that they result in classes that are linearly separable in the
N-dimensional feature space. Here we consider the V = 3
features corresponding to 4;(1,2), A4:(2,2), and A4;(3,3).
These coefficients capture the autocorrelations within each
signal and the cross-correlations across the time series.

V. EXPERIMENTAL RESULTS

A. Detection

The effectiveness of the signature derived from the TV-VAR
model parameters is demonstrated using one human and one
non-human subject, corresponding to an adult male and a
dog. For each test subject, the preprocessing and parameter
estirnation tasks described in Section III are performed, and
the appropriate features are extracted, as detailed in Section
IV-B. The labeled data are passed to the SVM algorithm, and
the resulting hyperplanes are depicted in Figures 5 and 6. In
both cases, the classes are linearly separable in the feature
space. In order to validate the results, Leave One Out Cross
Validation (L.OOCYV) is performed, and the results are given in
Table I. In LOOCY, a single observation is withheld, and the
gystem is trained using the remaining data [4]. The withheld
gample is then used to test the classifier, and this process is
repeated for each observation.
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Fig. 5. SVM based classifier for detecting presence of a human test subject.
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Fig. 6. SVM based classifier for detecting presence of a dog test subject.

B. Discrimination

The ability of the TV-VAR signature to discriminate among
multiple subjects is demonstrated using the same data used
in the detection experiments. The three decision regions are
computed by first training the SVM to classify “Human
Present” versus all other classes, followed by a second phase
to classify “Dog Present” versus all other classes. The result
is the creation of two hyperplanes that partition the data
into four regions, as shown in Figure 7. The training points
corresponding to times when the human is not present and
times when the dog is not present tend to cluster spatially,
forming a single class corresponding to “No Target Present”.
The fourth region corresponds to the overlap between the

Data Description Percent Correct
Human - Detection 97.22%
Dog - Detection 100%
Human/Dog - Discrimination 95%%

TABLE 1
LEAVE ONE OUT CROSS VALIDATION RESULTS.

Human Present
Human Not Present
Dog Present

Dog Not Present
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NO
TARGET
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Fig. 7. SVM based classifier for human/dog discrimination.

human and dog classes; test points that lie within this space
are classified as belonging to the “Human Present” class if the
distance from the test point to the “Human Present” hyperplane
exceeds the distance from the test point to the “Dog Present”
hyperplane. Cross-validation results are given in Table L

C. Discussion

The results given in this paper represent preliminary attempts
to characterize the signature of walking human and non-human
test subjects, using both passive and active acoustic sensors.
Clearly more work is needed to assess the usefulness of
these techniques to differentiate among multiple humans or
animals, or to detect a target from out-of-sample data. The
main contributions of this work are the formulation of a TV-
VAR model to capture the joint dynamics of the passive and
active data, and the utilization of three specific features derived
from this model for the design of classification systems for
detection and discrimination applications.
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