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ABSTRACT
Noise reduction using multiple microphones remains a challeng-

ing and crucial research problem. This paper presents a new multi-
channel noise-reduction algorithm based on spatio-temporal predic-
tion. Unlike many multichannel techniques that attempt to achieve
both speech dereverberation and noise reduction at the same time,
this new approach puts aside speech dereverberation and formulates
the problem as one of estimating the speech component received at
one microphone using the observations from all the available micro-
phones. In comparison with the existing techniques such as beam-
forming, this new multichannel approach has many appealing prop-
erties: it does not require the knowledge of the source location or the
channel impulse responses; the multiple microphones do not have
to be arranged into a specific array geometry; it works the same for
both the far-field and near-field cases; and most importantly, it can
produce very good noise reduction with minimum speech distortion
in real acoustic environments.

Index Terms— Microphone arrays, noise reduction, speech en-
hancement, beamforming.

1. INTRODUCTION
The problem of noise reduction using multiple microphones has at-
tracted a considerable amount of research attention. This is due to
the fact that, in theory, it is possible to develop multichannel algo-
rithms that can achieve significant noise reduction without distorting
the desired speech signal. The multichannel noise-reduction prob-
lem is illustrated in Fig. 1, where we have a speech source in the
sound field and use N microphones to collect the signals from their
field of view. The output of the nth microphone is given by

yn(k) = s(k) ∗ gn + vn(k)

= xn(k) + vn(k), n = 1, 2, . . . , N, (1)

where ∗ denotes convolution, s(k) is the source signal, gn represents
the acoustic channel impulse response from the source to micro-
phone n, and xn(k), vn(k), and yn(k) are, respectively, the speech,
the noise, and the noisy signals at the nth microphone. It is assumed
that vn(k) is a zero-mean random process that is uncorrelated with
xn(k). The objective of noise reduction is to mitigate the effect due
to the noise signals, vn(k), n = 1, 2, . . . , N .

In most of the traditional multichannel techniques such as beam-
forming, the speech enhancement problem consists in the estimation
of the source signal, s(k), from the observed noisy signals, yn(k)
[1]–[4]. This indeed involves two simultaneous subtasks, i.e., speech
dereverberation and noise reduction. However, speech dereverbera-
tion alone is a very difficult problem and there have not been any

practical solutions thus far. Therefore, it seems more reasonable that
we take speech dereverberation and noise reduction apart, and tackle
the two problems one at a time. This philosophy, also used in [5], is
embraced in this study. Here, we put aside speech dereverberation
and focus exclusively on noise reduction. So, the problem consid-
ered in this paper can be described as one of estimating the speech
signal observed at one microphone from the noisy signals received
at all the N microphones. Let us assume that we want to estimate
the speech signal at themth microphone. Then, the objective of this
paper is to estimate xm(k), given yn(k), n = 1, 2, . . . , N .
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Fig. 1. Illustration of a multichannel system.

2. PROPOSED MMSE ESTIMATORWITH MULTIPLE
MICROPHONES

With the signal model given in (1), an estimate of the speech com-
ponent xm(k) can be obtained by passing the N observed signals
through N temporal filters, i.e.,

x̂m(k) = hT
1my1(k) + hT

2my2(k) + · · · + hT
NmyN (k)

=

N∑
n=1

hT
nmyn(k), (2)

where

yn(k) =
[

yn(k) yn(k − 1) · · · yn(k − L + 1)
]T

,

and

hnm =
[

hnm,0 hnm,1 · · · hnm,L−1

]T
, n = 1, 2, . . . , N,

are, respectively, the observation signal vectors and the N FIR fil-
ters of length L. The corresponding error signal obtained by this
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estimation is written as

em(k) = x̂m(k) − xm(k)

=
N∑

n=1

hT
nmyn(k) − xm(k). (3)

From the signal model given in (1), we have

yn(k) = xn(k) + vn(k), n = 1, 2, . . . , N, (4)

where xn(k) and vn(k) are the speech and noise signal vectors, de-
fined similarly to yn(k). Substituting (4) into (3), we can decompose
the error signal into the following form:

em(k) = ex,m(k) + ev,m(k), (5)

where

ex,m(k) =

N∑
n=1

hT
nmxn(k) − xm(k) (6)

and

ev,m(k) =
N∑

n=1

hT
nmvn(k). (7)

The term ex,m(k) quantifies how much the speech sample xm(k) is
distorted due to the filtering operation. The larger the mean-square
value of ex,m(k), the higher the speech is distorted. In comparison,
the term ev,m(k) tells how much the noise is reduced. The smaller
the mean-square value of ev,m(k), the more the noise is reduced.
So, ideally, noise reduction is a problem of finding an optimal set
of the filters hnm (n = 1, 2, . . . , N ) such that the mean-square er-
ror (MSE) corresponding to the residual noise is minimized while
keeping the speech distortion ex,m(k) close to 0.

From (7), we can write the MSE associated with the residual
noise as

Jv,m(hm) = E
[
e2

v,m(k)
]

= hT
mRvvhm, (8)

where

hm =
[

hT
1m hT

2m · · · hT
Nm

]T
, (9)

Rvv = E[v(k)vT (k)] is the noise correlation matrix, and

v(k) =
[

vT
1 (k) vT

2 (k) · · · vT
N (k)

]T
. (10)

Now, the noise-reduction problem is equivalent to finding the opti-
mal filter as follows:

hm,o = arg min
hm

Jv,m(hm) subject to ex,m(k) = 0. (11)

The solution to (11) depends on the number of microphones and how
the spatio-temporal information is exploited. We have two cases:
N = 1 and N ≥ 2.

Case 1: N = 1.

In this case, we havem = N = 1. If the current speech sample
x1(k) cannot be completely predicted from its past samples (which

is generally true in practice), we can easily check that the solution to
(11) is

h1,o = u1, (12)

where

u1 =
[

1 0 · · · 0
]T (13)

is a unit vector of length L. With this degenerate filter, there will be
no noise reduction. So, in the single-channel scenario, if we want to
keep the speech undistorted, there will be no noise reduction. But
if we still want to achieve some noise reduction, we need to loosen
the constraint to allow some speech distortion. Indeed, this is al-
most the de facto standardized practice in the existing single-channel
noise-reduction techniques, where noise reduction is achieved at the
expense of speech distortion [6], [7].

Case 2: N ≥ 2.

In the single-channel situation, there is a fundamental compro-
mise between noise reduction and speech distortion. But if we use
multiple microphones, we can take advantage of the redundancy
among the microphones (or in other words, the spatio-temporal
information) to achieve noise reduction without introducing any
speech distortion.

Let us assume that we can find N filter matrices, Wnm (n =
1, 2, . . . , N ), such that

xn(k) = Wnmxm(k), n = 1, 2, . . . , N. (14)

For n = m, we have Wmm = I, where I is the identity matrix.
We will discuss later on how to determine an optimal estimate of the
matrix Wnm for n �= m; but for now, we assume that Wnm are
known. Substituting (14) into (6), we obtain

ex,m(k) = xT
m(k) [Wmhm − u1] , (15)

where

Wm =
[

WT
1m WT

2m · · · WT
Nm

]
. (16)

With this expression of the speech distortion, we can rewrite the con-
strained estimation problem in (11) into the following form:

hm,o = min
hm

Jv,m(hm) subject to Wmhm = u1. (17)

If we use a Lagrange multiplier to adjoin the constraint to the cost
function, the estimation problem in (17) can be written as

hm,o = arg min
hm

L (hm, λ) , (18)

where

L (hm, λ) = Jv,m(hm) + λT (Wmhm − u1)

= hT
mRvvhm + λT (Wmhm − u1) ,

and vector λ is the Lagrange multiplier. Evaluating the gradient of
L (hm, λ) with respect to hm and equating the result to zero gives

∂

∂hm
L(hm, λ) = 2Rvvhm + WT

mλ = 0. (19)

Now if we assume that the noise signals at the different microphones
are not completely coherent so that the noise covariance matrixRvv
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is full rank, from (19) and using the constraint, we easily find the
solution to (18):

hm,o = R−1
vv WT

m

[
WmR−1

vv WT
m

]−1

u1. (20)

We see that, in order to compute the optimal filter hm,o, we need to
know the two matricesRvv andWm. The noise correlation matrix
Rvv can be estimated during the absence of speech if we have a
voice activity detector (VAD). In the next section, we will discuss
how to determine theWm matrix.

3. ESTIMATION OF THEWMATRIX

From (14), we can construct the following MSE cost function:

J(Wnm) = E
{

[xn(k) − Wnmxm(k)]T ×

[xn(k) − Wnmxm(k)]
}

. (21)

Differentiating J(Wnm) with respect toWnm and equating the re-
sult to zero, we obtain an optimal estimate of theWnm matrix:

Wnm,o = RxnxmR−1
xmxm

, (22)

where
Rxnxm = E

[
xn(k)xT

m(k)
]

and
Rxmxm = E

[
xm(k)xT

m(k)
]

are, respectively, the cross-correlation and correlation matrices of
the speech signals. However, the signals xn(k) and xm(k) are not
observable so the direct computation ofWnm,o seems difficult. But
using the relation xn(k) = yn(k) − vn(k) and the fact that noise
and speech are uncorrelated, we can verify that

Rxnxm = Rynym − Rvnvm , (23)
Rxmxm = Rymym − Rvmvm , (24)

where Rynym and Rvnvm are defined similarly to Rxnxm , and
Rymym andRvmvm are defined similarly toRxmxm . As a result

Wnm,o = (Rynym − Rvnvm) (Rymym − Rvmvm)−1 . (25)

Now the optimal filter matrix depends only on the second-order
statistics of the noisy and noise signals. The statistics of the noisy
signals can be directly computed from the observed signals. If we
assume that the noise is stationary or at least slowly-varying so that
its characteristics stay the same from a silence period [i.e., when
xn(k) = 0] to the following period when speech is active and with
the help of a VAD, the noise characteristics can be estimated during
silence periods.

Using either (22) or (25), we can obtain an optimal estimate of
theWm matrix, i.e.,Wm,o. SubstitutingWm,o into (20), the opti-
mal filter hm,o can be rewritten as:

hm,o = R−1
vv WT

m,o

[
Wm,oR

−1
vv WT

m,o

]−1

u1. (26)

If xn(k) = Wnm,oxm(k), applying hm,o to filter the observed sig-
nals can reduce noise without introducing any speech distortion. In
practice, however, we do not have exactly xn(k) = Wnm,oxm(k)
so that some speech distortion is expected. But for long filters, we
can approach this equality so that the distortion can be kept very low.

4. EXPERIMENTS

In this section we evaluate the performance of the developed mul-
tichannel noise-reduction algorithm in real acoustic environments.
We set up a multiple-microphone system in the varechoic chamber
at Bell Labs [which is a room that measures 6.7 m long by 6.1 m
wide by 2.9 m high (x×y×z)]. A total of ten microphones are used
and their locations are, respectively, at (2.437, 5.600, 1.400), (2.537,
5.600, 1.400), (2.637, 5.600, 1.400), (2.737, 5.600, 1.400), (2.837,
5.600, 1.400), (2.937, 5.600, 1.400), (3.037, 5.600, 1.400), (3.137,
5.600, 1.400), (3.237, 5.600, 1.400), and (3.337, 5.600, 1.400). To
simulate a sound source, we place a loudspeaker at (1.337, 3.162,
1.600), playing back a speech signal prerecorded from a female
speaker. To make the experiments repeatable, we first measured the
acoustic channel impulse responses from the source to the ten mi-
crophones (each impulse response is first measured at 48 kHz and
then downsampled to 8 kHz). These measured impulse responses
are then treated as the true ones. During experiments, the micro-
phone outputs are generated by convolving the source signal with
the corresponding measured impulse responses. Noise is then added
to the convolved results to control the (input) SNR level.

We choose the first microphone as the reference microphone.
Substituting the optimal filter into (2) and setm = 1, we obtain the
optimal speech estimate as

x̂1(k) =
N∑

n=1

hT
n1,oyn(k) = x1,nr(k) + v1,nr(k),

where x1,nr(k) =
∑N

n=1 hT
n1,oxn(k) and v1,nr(k) =∑N

n=1 hT
n1,ovn(k) are, respectively, the speech filtered by the op-

timal filter and the residual noise. To assess the performance, we
evaluate two criteria, namely the output SNR and the Itakura-Saito
(IS) distance. The output SNR is defined as

SNRo =
E

[
x2

1,nr(k)
]

E
[
v2
1,nr(k)

] .

This measurement, when compared with the input SNR, tells us how
much noise is reduced. The IS distance is a speech-distortion mea-
sure. For a detailed description of the IS distance, we refer to [8].
Many studies have shown that the IS measure is highly correlated
with subjective quality judgements and two speech signals would be
perceptually nearly identical if the IS distance between them is less
than 0.1. In this experiment, we compute the IS distance between
x1(k) and x1,nr(k), which measures the degree of speech distortion
due to the optimal filter.

In order to estimate and use the optimal filter given in (20), we
need to specify the filter length L. If there is no reverberation, it is
relatively easy to determine L, i.e., it needs only to be long enough
to cover the maximal TDOA between the reference and the other mi-
crophones. In presence of reverberation, however, the determination
of L would become more difficult and its value should, in theory,
depend on the reverberation condition. Generally speaking, a longer
filter has to be used if the environment is more reverberant. This
experiment investigates the impact of the filter length on the algo-
rithm performance. To eliminate the effect due to noise estimation,
here we assume that the statistics of the noise signals are known
a priori. The input SNR is 10 dB and the reverberation condition
is controlled such that the reverberation time T60 is approximately
240 ms. The results are plotted in Fig. 2. One can see from Fig. 2(a)
that the output SNR increases with L. So, the longer is the filter, the
more the noise is reduced. Compared with SNRo, the IS distance
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decreases with L. This is understandable. As L increases, we will
get a better spatio-temporal prediction of x1(k) from xn(k). Conse-
quently, the algorithm achieves more noise reduction and meanwhile
causes less speech distortion. We also see from Fig. 2 that the output
SNR increases almost linearly with L. Unlike the SNR curve, the
relationship between the IS distance and the filter length L is not lin-
ear. Instead, the curve first decreases quickly as the filter length in-
creases, and then continues to decrease but with a slower rate. After
L = 250, continuing to increase L does not seem to further decrease
the IS distance. So, from speech-distortion point of view, L = 250
is long enough for reasonably good performance.
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Fig. 2. The output SNR and IS distance, both as a function of
the filter length L: (a) SNRo and (b) IS distance. The source is a
speech signal from a female speaker; the background noise at each
microphone is a computer-generated white Gaussian process; input
SNR = 10 dB; and T60 = 240 ms. The fitting curve is a second-
order polynomial.

The second experiment is to test the robustness of the multichan-
nel algorithm to reverberation. The parameters used are: L = 250,
N = 10, and input SNR = 10 dB. Compared with the previous
experiments, this one does not assume to know the noise statistics.
Instead, we developed a short-term energy based VAD to distinguish
speech-plus-noise from noise-only segments. The noise covariance
matrix is then computed from the noise-only segments using a batch
method and the optimal filter is subsequently estimated according to
(26). We tested the algorithm in two noise conditions: computed
generated white Gaussian noise and a noise signal recorded in a
New York Stock Exchange (NYSE) room. The results are depicted
in Fig. 3. We see that the output SNR in both situations does not
vary much when reverberation time is changed. This indeed demon-
strates that the developed multichannel algorithm is very robust to
reverberation. In comparison with the output SNR, we see that the
IS distance grows with the reverberation time. This result should
not come as a surprise. As the reverberation time T60 increases, it
becomes more difficult to predict the speech observed at one micro-
phone from that received at another microphone. As a result, more
speech distortion is unavoidable but it is still perceptually almost
negligible.

5. CONCLUSIONS

The existing multichannel noise-reduction techniques, such as beam-
forming, formulate the problem as one of recovering the desired
source signal from the outputs of an array of microphones. Since
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Fig. 3. Noise-reduction performance versus T60. ∗: in white Gaus-
sian noise; ◦: in NYSE noise; L = 250; input SNR = 10 dB. The
fitting curve is a second-order polynomial.

they have to deal with both speech dereverberation and noise reduc-
tion at the same time, these techniques in general lack robustness
and often produce very limited performance in real environments.
In addition, they normally require information such as the room im-
pulse responses, which is difficult to acquire reliably in practice. To
overcome the drawbacks of the existing techniques, this paper re-
formulated the multichannel noise-reduction problem. Instead of es-
timating the desired source signal, this formulation puts aside the
speech-dereverberation part and formulated the problem as one of
estimating the speech component received at one of the multiple mi-
crophones. We then developed an MMSE estimator based on spatio-
temporal prediction. Experiments demonstrated that the developed
technique can achieve significant noise reduction and the resulting
speech distortion is perceptually almost negligible. Compared with
the traditional beamforming techniques, the developed algorithm has
many appealing properties: it does not require the knowledge of the
source location or the channel impulse responses; the multiple mi-
crophones do not have to be arranged into a specific array geometry;
it works the same for both the far-field and near-field cases; and it
can produce very good and robust noise reduction with minimum
speech distortion in real acoustic environments.
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