STUDY OF THE WIDELY LINEAR WIENER FILTER FOR NOISE REDUCTION
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ABSTRACT

This paper develops a new widely linear noise-reduction Wiener
filter based on the variance and pseudo-variance of the short-time
Fourier transform coefficients of speech signals. We show that this
new noise-reduction filter has many interesting properties, including
but not limited to: 1) it causes less speech distortion as compared
to the classical noise-reduction Wiener filter; 2) its minimum mean-
squared error (MSE) is smaller than that of the classical Wiener fil-
ter; 3) it can increase the subband signal-to-noise ratio (SNR), while
the classical Wiener filter has no effect on the subband SNR for any
given signal frame and subband.

Index Terms— Noise reduction, Wiener filter, widely linear
Wiener filter, circularity, noncircularity.

1. INTRODUCTION

Noise reduction is often formulated as a linear filtering problem in
the frequency domain. When we work in the frequency domain,
we generally deal with complex random variables even though the
original time-domain signals are real in the context of speech appli-
cations. The main concern, then, is how to design the optimal noise-
reduction filters that can fully exploit the different statistics of the
complex components obtained via the short-time Fourier transform
(STFT). Theoretically, all the different orders of statistics should be
considered during the design of the optimal noise-reduction filter.
In practice, however, higher-order (higher than 2) statistics are in
general difficult to estimate, and as a result, most of today’s noise-
reduction algorithms only consider the second-order statistics. For
a zero-mean complex random variable, there are two basic types of
second-order statistics depending on whether the random variable is
circular or noncircular.

A complex random variable A is said to be second-order circu-
lar if £ (AQ) = 0, where E(-) denotes mathematical expectation,
E(AA*) = E(JA]?) # 0, and * denotes complex conjugation.
This indicates that the second-order behavior of a circular complex
random variable (CCRV) is well described by its variance. Note that
the Fourier components of stationary signals are CCRVs [1]. An-
other powerful aspect of the second-order CCRYV is that the classical
linear mean-squared estimation technique for real random variables
can easily be applied to CCRVs. As a matter of fact, many of the
existing frequency-domain noise-reduction filters are derived based
on the classical linear mean-squared estimation theory and use only
the variance information while assuming that E (AQ) = 0. How-
ever, the STFT coefficients of a nonstationary signal like speech are
not circular variables (see the example in Fig. 2, Section 4). Many
natural questions then arise: is the noncircularity useful for noise
reduction? If so, how do we use the noncircularity? How much it
can improve noise-reduction performance? This paper attempts to
answer these questions. We will show and study how to fully exploit
the second-order statistics of a noncircular complex random variable
(see [2], [3] for a complete description of the second-order behavior
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of a complex noncircular random variable) for noise reduction. We
will investigate the use of the so-called widely linear (WL) mean-
squared estimation theory [4]-[7] to formulate noise-reduction algo-
rithms in the frequency domain and explain the properties of the WL
noise-reduction filters.

2. PROBLEM FORMULATION
The noise reduction problem considered in this paper is one of re-
covering the nonstationary desired signal (clean speech) x(k), k be-
ing the discrete-time index, of zero mean from the noisy observation
(microphone signal) [8], [9]

y(k) = (k) + o(k), (1

where v(k) is the unwanted additive noise, which is assumed to be a
zero-mean random process (white or colored, stationary or not) and
uncorrelated with (k). In the STFT domain, (1) can be rewritten as

Y(n,m) = X(n,m) + V(n,m), (2)

where Y (n, m), X (n, m), and V (n, m) are respectively the STFTs
of y(k), z(k), and v(k), at time-frame n and frequency-bin (or sub-
band) m (withm =0,1,..., M —1).

Using the fact that 2:(k) and v(k) are assumed to be uncorre-
lated, we can write the variance of the noisy spectral coefficients as

¢Z/ (n7 m) = ¢$ (TL, m) + ¢’U (n: m): (3)

where ¢q(n,m) 2 E [lA(n, m)|2] is the variance of A(n,m),
A(n,m) is the STFT coefficients of the signal a(k) at time-frame
n and frequency-bin m, and a € {z,v,y}.

If Y (n, m) is real, the estimation of X (n, m) can be achieved
using the classical techniques, which has already been covered in
the rich literature, e.g., [8]-[10]. Here we consider the case where
Y (n, m) is complex. In this situation, an estimate of X (n, m) can
be obtained using the widely linear (WL) estimation technique as [4]

Z(n,m) = H(n,m)Y (n,m) + H' (n,m)Y”™ (n, m)
=h"(n, m)y(n,m), 4)

where Z(n,m) is the STFT of the signal z(k) [which is an estimate
of z(k)], H(n, m) and H'(n, m) are two complex gains, h(n, m) 2
[H*(n,m) H"(n,m)]". y(n,m) £ [¥(n,m) ¥"(n,m)]" and
superscripts © and © denote, respectively, transpose conjugate and
transpose. If H' (n, m) = 0 for any n and m, (4) degenerates to the
classical linear estimation theory [9]. This, however, will not happen
in general for noncircular complex random variables.

Unlike the classical noise-reduction filters where the signal es-
timate consists of only the filtered desired signal and residual noise,
the signal estimate Z(n,m) in (4) consists of an additional term
called interference. To see how the interference occurs, let us in-
troduce three concepts: the circularity quotient [7], the circularity
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matrix, and the covariance matrix, which are defined, respectively,
as

o a E [Az(n7 m)] 5

7{1( by ) E [|A(n,m)|2]7 5)
2 1 Ya(n, m)

rmm) £ | G ] @

®,(n,m) 2 g [a(n, m)aH(n7 m)] = ¢o(n,m)Ta(n,m), (7)

where a(n,m) 2 [ A(n,m) A*(n,m) ]|7. Itis easy to check

that 0 < |y4(n, m)| < 1. Now following the idea proposed in [11],
we can decompose X *(n, m) into two orthogonal components:

X*(n,m) =~ (n,m)X (n,m) + X'(n, m), (8)
where
X'(n,m) = X" (n,m) — vi(n,m)X(n,m), 9)
E [X(n,m)X" (n,m)] =0, (10)
and
E[|X (,m)[*] = o(nym) [1 = [e(mom)]. (D)

We can then rewrite (4) as
Z(n7 m) = de(nvm) +X;1(n m) + V}n(n,m), (12)
where

Xta(n,m) 2 p" (n, m)Tx(n, m)i1 X (n, m)
= H(n,m)X (n,m) + ~vi(n,m)H' (n,m)X (n, m),
X/i(n,m) 2 hH(n, m)is X' (n, m),

Vin(n, m) 2 p" (n,m)v(n,m),

(13a)

(13b)
(13¢)

are the overall filtered desired signal, the residual interference, and

the residual additive noise respectively; iy 2 [1 0]7 and i» 2
[0 1]". Note that the above decomposition of the signal X *(n, m)
is a key part of this paper in order to be able to properly design and
evaluate the optimal noise-reduction filter.

The three terms on the right-hand side of (12) are mutually un-
correlated. Therefore, we have

¢Z (ni m) = ¢$fd (’I’L, m) + ¢z’“ (TL, m) + ¢'Urn (’l’l, m)7 (14)

where
$rea(n,m) & B [| Xea(n, m)|] (15a)
= ¢o(n, m)h (n, m)Tx(n, m)irif' Tx(n, m)h(n,m),
Gy, (n,m) £ B [| XLy (n,m) ] (15b)
= ¢ (n,m) [1— e (n,m) ] 0" (n, m)inid h(n, m),
Guen (n,m) 2 B [|Vin(n, m) ] (15¢)

=h"(n,m)®,(n, m)h(n,m).

The objective of noise reduction in the frequency domain is then to
find optimal gains H (n, m) and H'(n, m) at each time-frame n and
frequency-bin m that would attenuate the noise as much as possible
with as little distortion as possible to the desired signal (speech).
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3. WIDELY LINEAR WIENER FILTER
We define the subband error signal between the estimated and de-
sired signals as

£(n,m) = Z(n,m) — X (n,m) (16)
= 1" (n, m)y(n,m) — X (n,m).
The subband mean-squared error (MSE) is then
T Ih(n,m)] £ B [|€(n,m)|’] (a7)
= 6 (n,m) [0 (m, m)Dx(m, m)iy — 1 ’
+ Gus (1, 1) + Gurn (m, ).

Taking the gradient of the subband MSE, .J [h(n, m)], with re-
spect to h' (n, m) and equating the result to zero give us the WL
Wiener filter:

hwiw(n,m) = @, " (n, m)®y(n, m)ix (18)
_ ¢z(n, m) )

B ¢y (n,m)

= 1= M . ]_-‘),71(1'1,7 m)rv(na m) il'

¢y (n, m)

It follows immediately that

Ty ' (n, m)Tx(n, m)ix

1-— Ya (n7 m)ﬂy; (’Il, m) . ¢E (’IZ, m)

H ), M) = : , 9
wiw (n, m) 1 — |y (n, m)\2 ¢y (n,m) (1
/ = (ny ’ITL) — Yy (n7 m) . $a (’I’L, m)

ot = ) symy

From the definitions of variance and circularity quotient, one can
easily verify the following relation:

Yy (’I’L, m)¢1/ (n: m) =Y (na m)¢1 (n: m)
+ Yo(n,m)p,(n,m). (20)

By using (20), the WL Wiener complex gains in (19) can be rear-
ranged as

1- Yo (n7 m)'Y; (n, m) . ¢U (n7 m)

H =1- - , (21

wiw (m, m) 1-— \’yy(n,m)|2 ¢y (n,m) (@1
U Yy (n= m) — T (n= m) ¢U (n7 m)
H ,m) = - . 21b
R e RS T M
We recall that the classical Wiener filter [9] is
¢ (n,m) $u(n,m)

Hw(n,m)= - "—"—--+=1—- —-"2=. 22
= m) T gy ) e

Of course, taking v, (n,m) = ~v,(n,m) = 0 in the WL Wiener
filter, we obtain the classical Wiener filter. While the Wiener filter is
always real, the WL Wiener filter is, in general, complex.

Now let us examine the minimum MSE for the WL Wiener filter.
The subband minimum MSE is found by substituting the WL Wiener
filter given in (18) into (17):

J [hwiw (n, m)] = ¢z (n, m) -

1-— % -if Ty(n, m)I‘;](n7 m)Ix(n, m)i1:| . (23)

The subband MSE for the classical Wiener filter is

J [hw (n, m)] = ¢z (n, m) {1 - %} . (24)
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Fig. 1. Comparison between the WL and classical Wiener filters for

their gain applied to filter the desired speech signal.

It is easy to check that
J [hwiw(n, m)] < J [hw(n,m)], Vn,m. (25)

So, the subband minimum MSE of the WL Wiener filter is smaller
than that of the classical Wiener filter, which shows one advantage
of the WL Wiener filter.

Now let us take a slightly different angle to study the WL Wiener
filter by examining the filtered desired signal and residual noise and
interference. Since in most situations noise is relatively more sta-
tionary than speech, it is reasonable to assume that v, (n, m) = 0.
In this case, if substituting (19) into (13a) and using some simple
mathematical manipulation, we can deduce the filtered desired sig-
nal due to the WL Wiener filter as

Xia,wiw (n, m) = Gia,wiw X (n, m), (26)
where

Gia,wrw(n,m) = Hwiw (n, m) + v, (n, m) Hyw(n, m) (27)
1 — iSNR(n, m)

2
TFiSNR(n, m) =l ~_iSNR(n,m)
iSNR(n,m) 17 , 1+iSNR(n,m)’
- [ NRn) e
and
: 4 ¢a(n,m)
iSNR(n, m) = bu(n, m) (28)

is the subband input SNR at frame n and frequency-bin m.
Recall that for the classical Wiener filter, the gain filter applied
to the desired speech is
Gta,w(n,m) = Hw(n,m) = % (29)
It can be checked that 1 > Giq,wrw(n, m) > G,w(n,m) > 0,
meaning that the WL Wiener filter introduces less speech distortion.
Figure 1 plots both the G¢a,wrw (n, m) and Gsa,w(n, m) as a func-
tion of iISNR(n, m). It is seen that both the Gq, wrw(n, m) and
G+a,w(n, m) increase with the subband input SNR. So, less speech
distortion is added to the enhanced signal by both the WL and classi-
cal Wiener filters as the subband input SNR increases. It is also seen
that Gra,wrw(n, m) increases as |y, (n, m)| increases, which can
be easily checked from (27). Therefore, the more the desired sig-
nal is noncircular, the less is the signal distortion caused by the WL
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Wiener filter. However, when SNR is either very large (e.g., > 15
dB) or very small (e.g., < —15 dB), Gia,wrw (n, m) converges to
Gta,w(n, m) regardless of the degree of speech noncircularity. In
this case, both the WL Wiener and classical Wiener have a simi-
lar amount of speech distortion. We also notice from Fig. 1 that a
significant degree of noncircularity is needed in order for the WL
Wiener filter to have noticeable less speech distortion than the clas-
sical Wiener filter. For instance, when iSNR(n, m) = 5 dB, if we
want the WL Wiener filter to have 5% less speech distortion than the
classical Wiener filter, we would need |y (n, m)| > 0.76.

Following the same line of analysis, we can compare the WL
and classical Wiener filters for their noise reduction performance,
which will not be presented here due to the space limit.

Having shown that the WL Wiener filter introduces less speech
distortion and has a smaller minimum MSE than the classical Wiener
filter, we now analyze the subband output SNR of the WL Wiener
filter. We have the following theorem.

Theorem: With the WL Wiener filter given in (18), the subband
output SNR is always greater than or at least equal to the subband
input SNR, i.e., oSNR [hwrw (n, m)] > iSNR(n, m), Vn, m.

Taking into account the interference component, we can write
the output subband SNR of a WL filter as

Puga (1, M)
¢z’ (’I"L, m) + ¢vm (na m) ’

ri

1>

oSNR [h(n, m)]

(30)

Applying (15) and (19) to (30) and using some mathemati-
cal manipulation, we can show that oSNR [hwrw(n,m)] >
¢x(n,m)/dy(n,m) = iSNR(n,m). The detailed proof is not
presented here due to the space limit. Recall that for the classical
Wiener filter, the input and output subband SNRs are equal, i.e.,

OSNR [hyy (n, m)] = 22 _ iSNR(n, m). 31

Gu(n,m)

So, the classical Wiener filter cannot improve the subband SNR.
But the WL Wiener filter can improve the subband SNR, which,
again, shows the advantage of the WL Wiener filter over the clas-
sical Wiener filter.

4. EXPERIMENTS

The clean speech used in this experiment is from the TIMIT database
[12], which was designed to provide speech data for acoustic-
phonetic studies and for the development and evaluation of auto-
matic speech recognition (ASR) systems. Each speech signal in this
database is recorded using a 16-kHz sampling rate and is accom-
panied by manually segmented phonetic (based on 61 phonemes)
transcripts. In this experiment, we took one signal from the speaker
FAKSO and downsampled it into 8 kHz. This signal is then used
as the clean speech. Figure 2 (the upper trace) plots this signal and
also visualizes both the phonetic transcription and phoneme bound-
aries. The corresponding noisy signal is generated by adding white
Gaussian noise into the clean speech with different SNRs.

To perform noise reduction in the frequency domain, the input
speech signal is partitioned into overlapping frames with a frame
width of 8 ms and an overlapping factor of 75%. A Kaiser win-
dow is then applied to each frame and the windowed frame signal
is subsequently transformed into the frequency domain using a 64-
point FFT. At each subband and for each phoneme, a short-time
sample average is used to replace the mathematical expectation to
compute the variance parameters and circularity quotients. Note that
the parameters ¢.(n,m) and y.(n,m), ¢,(n, m) and ~,(n, m),
and ¢, (n, m) and 7, (n, m) are directly computed from the clean
speech, the noisy, and the noise signals respectively. Figure 2 (the
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Fig. 2. A speech signal selected from the TIMIT database and
the corresponding ~y, (n, m) estimated with a short-time sample av-
erage. The upper trace: waveform with phoneme labeling and
phoneme boundaries. The middle trace: the real(o), imaginary (2),
and magnitude (o) parts of v, (n, 3) estimated with a short-time sam-
ple average. The lower trace: the real(0), imaginary (»), and mag-
nitude (o) of v, (n, 6) estimated with a short-time sample average.

lower two traces) shows the estimated =y, at the third and sixth sub-
bands. It is clearly seen that v, (n, m) is not equal to zero, which
illustrates that the complex STFT coefficients of speech are not cir-
cular variables.

With the computed variance and noncircularity parameters, we
constructed a WL Wiener filter for each phoneme at each subband
according to (21). After passing the noisy speech spectrum through
the constructed WL Wiener filter, the inverse STFT (with overlap
add) is used to obtain the time-domain speech estimate. For the pur-
pose of comparison, we also constructed the classical Wiener filter
[eq. (22)] using the estimated variance parameters. To assess the
noise-reduction performance of the WL and classical Wiener filters,
we evaluate two objective measures: the speech-distortion index and
the output SNR. The speech-distortion index is defined as [9]

ona(h) 2 on Emmo B [Xia(nm) = X(nm)] - )

Y0 Yomso $a(n,m)

For the classical Wiener filter, its output consists of two components:
the filtered desired speech and residual noise. The output SNR can
be defined as

8 TL T by (nm)
OSNR(w) = S () Gy

While for the WL Wiener filter, since its output also consists of an
interference component, we define its output SNR as

4 Zn Zi\::_(]l z£q (n, m) .
5 Sz [6er, () + b ()]

OSNR(hWLw) (34)

Table 1 presents the results. It is seen from Table 1 that the mea-
sured speech-distortion index for the WL Wiener filter is smaller
than that of the classical Wiener filter. This coincides with the the-
oretical analysis that the WL Wiener filter introduces less speech
distortion to the desired signal. The two filters have achieved similar
SNR improvement, which is somehow unexpected. The underlying
reason, we suspect, could be due to the noncircularity estimation.
We only compute one noncircularity quotient for each phoneme at
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Table 1. Performance of the classical and WL Wiener filters in white
Gaussian noise.

Performance NR iSNR (Input SNR)
Measure filter [-I0dB[-5dB[0dB [5dB [10dB

Speech distortion | WF | 0.213 |0.097 | 0.047 | 0.020 | 0.009
Usd WL | 0.205 ]0.093 |0.045[0.019 | 0.008
Output SNR WF | 5.5 82 | 11.3 | 143 | 174
oSNR (dB) WL | 5.6 82 | 11.3 | 143 | 174

each subband. Since speech is nonstationary and time varying, its
statistics may change significantly even within one phoneme. So,
the short-time average method may not necessarily be a good or re-
liable approach to estimating the noncircularity.

5. CONCLUSIONS

When we work with the STFT coefficients in the frequency domain,
we generally deal with complex random variables even though the
original time-domain signals are real in the context of speech appli-
cations. A complex random variable can be either (second-order)
circular or noncircular depending on whether its pseudo-variance is
zero or not. Traditionally, the STFT coefficients of speech are as-
sumed to be circular and most noise-reduction approaches design
the noise-reduction filter based only on the variance of the STFT co-
efficients (or power spectra) of the noise and noisy signals. In this
paper, we have illustrated that the STFT coefficients of speech are
in general noncircular variables because speech signals are highly
nonstationary. Based on the noncircularity, we have deduced a WL
noise-reduction Wiener filter. We have shown through theoretical
analysis that the WL Wiener filter introduces less distortion to the
desired speech signal and has a smaller minimum MSE as compared
to the classical Wiener filter. Most importantly, the WL Wiener filter
can improve the subband SNR, which is different from the classical
Wiener filter that does not change the subband SNR for any given
frame and subband.
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