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ABSTRACT 
In this paper, we revisit the noise-reduction problem in the time do­
main and present a way to decompose the filtered speech into two 
uncorrelated (orthogonal) components: the desired speech and the 
interference. Based on this new decomposition, we discuss how to 
form different optimization cost functions and address the issue of 
how to design different noise-reduction filters by optimizing these 
new cost functions. Particularly, we cover the design of the max­
imum signal-to-noise-ratio (SNR), the Wiener, the minimum vari­
ance distortionless response (MVDR), and the tradeoff filters. It is 
interesting that with this new decomposition, we can now design the 
MVDR filter that can achieve noise reduction without adding speech 
distortion in the single-channel case, which has never been seen be­
fore. We also demonstrate that the maximum SNR, Wiener, and 
tradeoff filters are identical to the MVDR filter up to a scaling factor. 
From a theoretical point of view, this scaling factor is not significant 
and should not affect the output SNR at any processing time. But 
from a practical viewpoint, the scaling factor can be time-varying 
due to the non stationarity of the speech and possibly the noise and 
can cause discontinuity in the residual noise level, which is unpleas­
ant to listen to. As a result, it is essential to have the scaling factor 
right from one processing sample (or frame) to another in order to 
avoid large distortions and for this reason, it is recommended to use 
the MVDR filter in speech enhancement applications. 

Index Terms- Single-channel noise reduction, Wiener filter, 
maximum SNR filter, minimum variance distortionless response 
(MVDR) filter, tradeoff filter. 

1. PROBLEM FORMULATION 
The noise-reduction problem considered in this paper is one of re­
covering the desired signal (or clean speech) x(k), k being the 
discrete-time index, of zero mean from the noisy observation (mi­
crophone signal) [1] , [2] , [3] 

y(k) = x(k) + v (k), (1) 

where v(k) , assumed to be a zero-mean random process, is the un­
wanted additive noise that can be either white or colored but is un­
correlated with x(k) . All signals are considered to be real and broad­
band. 

The signal model given in (1) can be put into a vector form: 

y(k) = x(k) + v(k), (2) 

where 

y(k) � [ y(k) y(k -1) y(k-L+1) ]T 
(3) 

is a vector of length L, superscript T denotes transpose of a vector or 
a matrix, and x( k) and v( k) are defined in an equivalent way to y( k). 
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Since x (k) and v (k) are uncorrelated by assumption, the correlation 
matrix (of size L xL) of the noisy signal can be written as 

(4) 
I:; 

where E [.J denotes mathematical expectation, and Rx 
E [x(k)xT (k)] and Rv � E [v(k)vT (k)] are the correlation matri­
ces of x(k) and v(k), respectively. The objective of noise reduction 
is then to find a "good" estimate of either x(k ) or x(k) in the sense 
that the additive noise is significantly reduced while the desired sig­
nal is not much distorted. 

In this paper, we focus our discussion on the estimation of x(k) 
only. In other words, we consider to estimate the desired signal on 
a sample-by-sample basis. It should be noted, though, that any ap­
proach developed here should be easily extended to the estimation 
of x( k). Specifically, an estimate of the desired signal sample x( k) 
is obtained by applying a finite-impulse-response (FIR) filter to the 
observation signal vector y(k) [4] ,  i.e., 

x(k) = h
T y(k) = xf (k ) + vrn(k) , (5) 

where 

(6) 

is an FIR filter of length L, xf (k ) � hT x(k) is the filtered speech, 

and vrn(k) � hT v(k) is the residual noise. With this filtering model, 
the noise-reduction problem then becomes one of finding an "op­
timal" filter that can significantly reduce the additive noise while 
keeping the speech distortion due to the filter as small as possible. 
In order to find such an "optimal" filter, we need to define an error 
signal and a cost function. 

Traditionally, the error signal for the estimator given in (5) is 
defined as 

where 

e(k) � x(k) - x(k) = e�(k) + e�(k), 

c I:; T ed (k) = xf (k) - x(k) = h x(k) - x(k) 

denotes the signal distortion due to the FIR filter, 

(7) 

(8) 

(9) 

represents the residual noise, and we use the superscript "e" to de­
note the classical methods. The mean-square error (MSE) is then 

J (h) � E [e2(k)] = J:i (h) + J;' (h), (10) 

where 

(11) 
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and 

(12) 

Given the above definition of the MSE, the optimal noise-reduction 
filters can be obtained by directly minimizing J (h) , or by minimiz­
ing either J;j (h) or J;; (h) with some constraint. 

It is seen that the filtered speech is treated as the desired signal in 
the definitions of the error signal and MSE in the classical methods. 
However, this definition of the desired speech incurs many problems 
for both the design and evaluation of noise-reduction filters. For 
example, the filter that maximizes the output SNR should intuitively 
be a good filter. However, we found that such a filter introduces too 
much speech distortion that renders it useless in practice. 

In this paper, we present a new way to decompose the filtered 
speech into two uncorrelated (orthogonal) components: the desired 
speech and the interference. Specifically, since our desired signal at 
time k is only the sample x(k) , we can decompose the whole vector 
x(k) into the following form: 

x(k) = x(khx +x'(k) = xd(k) +x'(k) , 

where Xd(k) � x(khx' x'(k) � x(k) - x(khx' 

'Y x = ['Yx,o 'Yx,l 
= [1 'V 1 IX, 

E [x(k)x(k) ] 
E [x2(k) ] 

'Yx,L-l ] T 

'Yx,L-l ]T 

(13) 

(14) 

is the (normalized) correlation vector (of length L) between x(k) 
andx(k), 

/::,. E [x(k)x(k - I)] 
'Yx,l = E [x2(k)] (IS) 

is the correlation coefficient between x(k) and x(k - I) with -1 ::; 
'Yx,l ::; 1. It is easy to see that xd(k) is correlated with x(k) , while 
x'(k) is orthogonal to x(k) , i.e., 

E [x(k)x'(k)] = O. 

Substituting (13) into (S), we get 

x(k) = hT [x(khx +x' (k) + v(k)] 
= Xfd(k) + x�i(k) + vrn(k), 

(16) 

(17) 

where Xfd(k) � x(k)hT 'Yx is the filtered desired signal, x�i(k) � 

hT x' (k) is the interference, and vrn(k) � hT v(k) , as in the classical 
methods, represents the residual noise. It can be checked that the 
three terms Xfd(k) , x�i(k) , and vrn(k) are mutually uncorrelated. 
Therefore, the variance of x(k) is 

where 

(18) 

(19) 

(20) 

(21) 

O"� � E [x2 (k)] is the variance of the desired signal, RXd = 

O"� 'Y x 'Y; is the correlation matrix (whose rank is equal to 1) of 
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xd(k) , and Rx' � E [x' (k)X'T(k)] is the correlation matrix of 
x'(k). 

Comparing (17) with (S), one can see the difference between the 
traditional and new definitions of the desired signal after filtering. 
Specifically, the whole filtered speech xf (k) = hT x(k) is treated as 
the desired speech in the traditional methods, while in our new for­
mulation, Xfd(k) = x(k)hT 'Yx is considered as the desired speech. 
Notice that in the new formulation, there appears an interference 
term after filtering. This term should be treated as noise and should 
be minimized. 

Now, the error signal between the estimated and desired signals 
can be defined as 

e(k) � x(k) - x(k) = ed(k) + er(k) , 

where 

is the signal distortion due to the FIR filter and 

represents the residual interference plus noise. 
The MSE is then 

where 

and 

J (h) = E [e2(k)] = Jd (h) + Jr (h) , 

2 2 ( T ) 2 Jd (h) = E [ed(k)] = O"x h 'Yx- 1  

(22) 

(23) 

(24) 

(2S) 

(26) 

(27) 

It is clear that the objective of noise reduction is to find opti­
mal FIR filters that would either minimize J (h) or minimize Jr (h) 
or Jd (h) subject to some constraint. Comparing (22) with (7) and 
(2S) with (10), one can clearly see the difference between the new 
decompositions of the error signal and MSE and their traditional de­
compositions. 

2. OPTIMAL FILTERS 
2.1. Maximum SNR filter 
As far as noise reduction is concerned, it is desirable to design a filter 
that can maximize the SNR of the output signal. With the signal 
model given in (1), the input SNR is 

2 
iSNR � 

O"
�, 

O"v 
(28) 

where O"� � E [v2 (k)] is the variance of the noise. 
To quantify the level of noise remaining at the output of the fil­

ter, we define the output SNR as the ratio of the variance of the 
filtered desired signal over the variance of the residual interference 
plus noise, i.e., 

0"2 
oSNR (h) = 2 

xfd 
2 a x�i + CTvrn 

where 

O"� (hT 'Y x) 2 
hTRinh 

(29) 

(30) 



is the interference plus noise covariance matrix. The term in the 
most right-hand side of (29) is known as the generalized Rayleigh 
quotient. So the filter that maximizes the output SNR is 

(31) 

where qrnax (R;;; 1 RXd) is the eigenvector corresponding to the max­

imum eigenvalue of R;;; 1 RXd , i.e., Arnax (R;;; 1 RXd). With this filter, 
the output SNR is 

oSNR (hrnax) = oSNRrnax = Arnax (R;;;lRxd) . (32) 

Since the rank of the matrix RXd is equal to 1, we also have 

(33) 

where tr [·] denotes the trace of a square matrix. The quantity 
oSNRrnax corresponds to the maximum SNR that can be achieved 
through filtering. As a result, we have 

oSNR (h) ::; oSNRrnax, \Ih (34) 

and 

oSNR (hrnax) = oSNRrnax 2: iSNR. (3S) 

2.2. Wiener 
The Wiener filter is easily derived by taking the gradient of the MSE, 
i.e., J (h) defined in (2S), with respect to h and equating the result 
to zero: 

(36) 

where I is the identity matrix of size L x L and io corresponds to the 
first column ofI. Since 

(37) 

we can rewrite (36) as 

(38) 

From Section 1, it is easy to verify that 

Ry = O"�T'xl:; + Rin. (39) 

Determining the inverse of Ry from (39) with the Woodbury's iden­
tity 

(40) 

and substituting the result into (38), we get another interesting for­
mulation of the Wiener filter: 

that we can rewrite as 

hw R;;;lRy -I . 
[ 

1 ]10 1 - L + tr Rin Ry 

R;;;lRxd . 
1 + oSNRrnax 

10· 

Using (41), we deduce that the output SNR is 

oSNR(hw) = oSNRrnax = tr [R;;;lRy]- L. 

(41) 

(42) 

So, the Wiener filter maximizes the output SNR. The two filters hw 
and hrnax are equivalent (different only by a scaling factor). 
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2.3. Minimum Variance Distortionless Response 
The celebrated minimum variance distortionless response (MVDR) 
filter proposed by Capon [S] is usually derived in a context where we 
have at least two sensors (microphones) available. Interestingly, with 
the new formulation, we can also derive the MVDR (with one sensor 
only) by minimizing the MSE of the residual interference plus noise, 
Jr (h) , with the constraint that the desired signal is not distorted. 
Mathematically, this is equivalent to 

min hTRinh subject to hT T'x = 1. 
h 

The solution to the above optimization problem is 

R-1 h - in T'x MVDR - TR-1 ' T'x in T'x 
which can also be written as 

(43) 

(44) 

(4S) 

Obviously, we can rewrite the MVDR as 

R;-lT'x hMVDR = TR-1 
(46) 

T'x y T'x 

The Wiener and MVDR filters are simply related as follows 

where 

T oSNRrnax 
Qhw = hwT' x = -----=--1 + oSNRrnax 

(48) 

So, the two filters hw and hMVDR are equivalent up to a scaling 
factor. It is easy to see that 0 ::; Qhw ::; 1. On a short-time basis, a 
scaling factor does not affect the SNR. So, we have 

oSNR (hMVDR) = oSNR (hw) . (49) 

However, the scaling factor is in general time-varying due to the non­
stationarity of the speech and possibly the noise. It acts as a weight­
ing process that puts more attenuation in silence periods where the 
desired speech is absent and less attenuation when speech is present. 
As a result, The Wiener filter may have a higher output SNR if we 
evaluate the SNR on a long-time basis. But this weighting process 
can also cause discontinuity in the residual noise level, which is un­
pleasant to listen to and should be avoided in practice. 

2.4. Tradeoff 
In the tradeoff approach, we try to compromise between the amount 
of noise reduction and the degree of speech distortion. Instead of 
minimizing the MSE as we already did to find the Wiener filter, we 
could minimize Jd (h) with the constraint that the residual interfer­
ence plus noise is less than the original noise level. Mathematically, 
this is equivalent to 

min Jd (h) subject to Jr (h) = f30"�, 
h 

(SO) 

where 0 < f3 < 1 to insure that we get some noise reduction. By 
using a Lagrange multiplier, p, 2: 0, to adjoin the constraint to the 
cost function, we easily deduce the tradeoff filter: 

hT'J.L=O"qO"�T'xT'� +P,Rinrl
T'x= 2

R;;;1;i; 1 ' (SI) p,O"x + T'x · n T'x 
where the Lagrange multiplier, p" satisfies Jr (hT,J.L) = f30"�. Taking 
p, = 1, we obtain the Wiener filter while for p, = 0, we get the 
MVDR. By playing on the value of p" we can make a compromise 



between noise reduction and speech distortion. Again, we observe 
here as well that the tradeoff and MVDR filters are equivalent up to 
a scaling factor, i.e., 

hT,/L = ahT,l'hMVDR, (52) 

oSNRmax 

fJ, + oSNRmax' 
(53) 

Again, we have 0 :s: ahT,1' :s: 1. Locally at each time instant k, 
the scaling factor should not affect the SNR. So, the output SNR of 
the tradeoff filter is independent of fJ, and is identical to that of the 
MVDR filter, i.e., 

oSNR (hT,/L) = oSNR (hMVDR), VfJ,. (54) 

3. EXPERIMENTAL RESULTS 
In this section, we use experiments to illustrate the relationship be­
tween the Wiener, MVDR, and tradeoff filters. Note that the max­
imum SNR filter is a unit vector, which has to be properly scaled 
according to the signal level at every time instant k, which will not 
be discussed here. 

The clean speech signal used in the experiments was recorded 
from a female speaker in a quiet office room. It was sampled at 
8 kHz. The overall length of the signal is 30 seconds. The noisy 
speech is obtained by adding a car noise signal (recorded in a car 
running at 50 miles/hour on a high way) to the clean speech and the 
noise signal is properly scaled to control the input SNR to 10 dB. 
The first 5 seconds of the clean and noisy signals are shown in Fig. I 
(a) and (b). 

Implementation of the noise-reduction filters derived in Sec­
tion 2 requires estimation of the correlation matrices Ry, Rx, and 
Rv, the correlation vector '"Yx' and the signal variance 0";. Compu­
tation of Ry is relatively easy because the noisy signal y(k) is ac­
cessible. But in practice, we need a noise estimator or voice activity 
detector (VA D) to compute all the other parameters. The problems 
regarding noise estimation and VAD have been widely studied in the 
literature and we have developed a recursive algorithm in our pre­
vious research that can achieve reasonably good noise estimation in 
practical environments [4].  However, in this paper, we will focus on 
illustrating the basic ideas while setting aside the noise estimation is­
sues. So, we will not use any noise estimator in our experiments. In­
stead, we directly compute the noise statistics from the noise signal. 
Specifically, we set the filter length L to 20. At each time instance 
k, the matrix Ry is computed using the most recent 480 samples (60-
ms long) of the noisy signal with a short-time average. The matrix 
Rv is also computed using a short-time average; but noise is more 
stationary so we use 960 samples (120-ms long). Then all the other 
parameters are computed in the following way: Rx = Ry - Rv, &; 

is taken as the first element of Rx, and l' x is equal to the first column 
of Rx normalized by &;. 

With the computed covariance matrices and correlation vec­
tors, we then constructed the Wiener, MVDR, and tradeoff (with 

fJ, = 0.01) filters according to (41), (44), and (51) respectively. Fig­
ure I (c) plots the estimated scaling factors ahw and ahT,1' in the dB 
scale. It is seen that the value of the two scaling factors is approxi­
mately I (0 dB) during the presence of speech while it is rather small 
in the absence of speech. This indicates that the Wiener filter is more 
aggressive in suppressing silence periods while it behaves almost the 
same as the MVDR filter during the presence of speech. Similarly, 
the tradeoff filter can have more noise attenuation as compared to the 
MVDR filter, but only in the silence periods. The aggressiveness of 
the tradeoff filter in suppressing silence periods depends on the value 
of fJ,. The larger the value of fJ" the more aggressive is the tradeoff 
filter in suppressing the noise in silence periods. Figure I (d) and 
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Fig. 1. (a) The clean speech waveform, (b) the noisy speech wave­
form, (c) the scaling factor of the Wiener and tradeoff (fJ, = 0.01) 
filters compared to the MVDR filter, (d) the enhanced signal by the 
MVDR filter, and (e) the enhanced signal by the Wiener filter. Car 
noise with iSNR = 10 dB and L = 20. 

(e) plot the outputs of the MVDR and Wiener filters. We found that 
the enhanced signal by the MVDR filter is more pleasant to listen to 
than the output of the Wiener filter because the residual noise level 
with the Wiener filter changes significantly from time to time while 
it remains almost the same with the MVDR filter. Therefore, it is 
recommended to use the MVDR filter in practice. 

4. CONCLUSIONS 
In this paper, we reexamined the noise-reduction problem in the time 
domain and presented a new way to decompose the filtered speech 
into two uncorrelated (orthogonal) components: the desired speech 
and the interference. Based on this new decomposition, we dis­
cussed how to form different optimization cost functions. By opti­
mizing these cost functions, we showed how to derive the maximum 
SNR, the Wiener, the MVDR, and the tradeoff filters. Through both 
theoretical analysis and experimental results, we demonstrated that 
the maximum SNR, Wiener, and tradeoff filters are identical to the 
MVDR filter up to a scaling factor. From a theoretical point of view, 
this scaling factor is not significant and should not affect the out­
put SNR at any processing time. But from a practical viewpoint, the 
scaling factor can cause significant discontinuity in the residual noise 
level, which is unpleasant to listen to. As a result, it is essential to 
have the scaling factor right from one processing sample (or frame) 
to another in order to avoid large distortions and for this reason, it is 
recommended to use the MVDR filter in speech enhancement appli­
cations. 
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