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ABSTRACT 

This paper studies the problem of single-channel noise reduction in 
the time domain, where an estimate of a vector of the desired clean 
speech is achieved by filtering a frame of the noisy signal with a 
rectangular filtering matrix. The core issue with this problem for­
mulation is then the estimation of the optimal filtering matrix. The 
squared Pearson correlation coefficient (SPCC) is used. We show 
that different optimal filtering matrices can be derived by maximiz­
ing or minimizing the SPCCs between different signals. For exam­
ple, maximizing the SPCC between the enhanced signal and the fil­
tered speech gives the reduced-rank Wiener and minimum distortion 
(MD) filtering matrices while minimizing the SPCC gives the min­
imum noise (MN) and another reduced-rank Wiener filtering matri­
ces. Simulation results are presented to illustrate the properties of 
these filtering matrices. 

Index Terms- Noise reduction, speech enhancement, single­
channel, time-domain filtering, optimal filtering matrices, Pearson 
correlation coefficient. 

1. INTRODUCTION 

Noise reduction has been a major challenge in speech signal pro­
cessing and, as a consequence, lots of efforts have been devoted to 
this problem over the past few decades [1]- [16]. Among various 
techniques that have been developed, the filtering technique is per­
haps the most straightforward method, which obtains an estimate of 
the clean speech sample at every time instant by applying a filter­
ing vector to the noisy signal vector [10-12]. Recently, this filtering 
technique has been extended to a more generic case where an esti­
mate of a block of the desired clean speech is achieved every time 
by applying a rectangular filtering matrix instead of a filtering vec­
tor to the noisy signal [14], [13]. This generalized version of the 
filtering method does not only improve the noise reduction perfor­
mance if the block size is properly chosen, but is also computation­
ally more efficient as compared to the sample based method [13]. 
With this formulation of the noise reduction problem, the core issue 
is the derivation of optimal filtering matrices. 

Typically, the optimal filtering matrices are derived from the 
mean-squared error (MSE) criterion [7], [8]. Recently, the squared 
Pearson correlation coefficient (SPCC) has been introduced as the 
cost function to derive noise reduction filters [7]. Using the SPCC 
has been shown to have many advantages as compared to the MSE 
criterion. For instance, it can, on the one hand, provide many new 
insights into the traditional noise reduction filters derived from the 
MSE criterion and, on the other hand, help deduce some new filters 
that were not seen with the MSE criterion. In our previous work [12], 
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we explored the use of the SPCC as the cost function to design op­
timal filtering vectors. In this work, we extend our previous study 
to a more general, block-based framework with a rectangular fil­
tering matrix. Combining the SPCC with the block-based filtering 
framework, we develop a new class of filtering matrices for noise 
reduction by either maximizing or minimizing the SPCC between 
different signals. We show that maximizing the SPCC between the 
enhanced signal and the filtered speech, we can derive two optimal 
rectangular filtering matrices, i.e., the reduced-rank Wiener and min­
imum distortion (MD) filtering matrices, which give direct estimates 
of the clean speech. While minimizing the SPCC, we derive the min­
imum noise (MN) filtering matrix and another reduced-rank Wiener 
filtering matrix, which give estimates of the noise from which we 
deduce estimates of the clean speech. 

2. SIGNAL MODEL AND PROBLEM FORMULATION 

In the noise reduction problem considered in this paper, the noisy 
observation or microphone signal is given by [8,14] 

y(k) = x(k) + v(k), (1) 

where k is the discrete-time index, x( k) is the clean speech signal, 
and v(k) is the unwanted additive noise, which is assumed to be 
uncorrelated with x( k). All signals are considered to be zero mean, 
real, stationary, and broadband. 

The signal model given in (1) can be put into a vector form by 
considering the L most recent successive time samples, i.e., 

where 

y(k) = x(k) + v(k), 

y(k) = [ y(k) y(k -1) 

(2) 

Y(k-L+1) ] T (3) 

is a vector of length L, superscript T denotes transpose of a vector 
or a matrix, and x(k) and v(k) are defined in a similar way to y(k). 
Since x(k) and v(k) are uncorrelated by assumption, the correlation 
matrix (of size L xL) of the noisy signal can be written as 

(4) 

where E�l denotes mathematical expectation, and Rx = 

E [x(k)x (k)] and Rv = E [v(k)vT (k)] are the correlation ma­
trices of x(k) and v(k), respectively. 

Let us define the vector of length M: 

x(k) = [ x(k) x(k -1) 

where 1 :::; M :::; L. In the same manner, the vector v(k) is com­
posed of the first M elements of v(k). The objective of single­
channel noise reduction (or speech enhancement) in the time domain 
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is then to find a "good" estimate of the desired signal vector, x(k), 
from the observation signal vector, y(k), in the sense that the ad­
ditive noise is significantly reduced while the desired signal is not 
much distorted. 

We end this section by defining the input signal-to-noise ratio 
(SNR): 

iSNR = tr (Rx) 
tr(Rv) , (6) 

where tr(·) denotes the trace of a square matrix. This is one of the 
most fundamental measures in speech enhancement. 

3. LINEAR FILTERING WITH A RECTANGULAR 

MATRIX AND CORRELATION COEFFICIENT 

An estimate of x(k) or v(k) can be obtained by applying a linear 
transformation to y(k) [14], i.e., 

z(k) = Hy(k) = Xfd(k) + vfn(k), (7) 

where z(k) is an estimate of x(k) or v(k), 

(8) 

is a rectangular filtering matrix of size M x L, hm, m = 
1, 2, ... , M are real-valued filters of length L, Xfd(k) = Hx(k) 
is the filtered desired speech, and vfn(k) = Hv(k) is the filtered 
noise. 

It is of great importance to know how much of x(k) or v(k) 
is contained in the estimator z(k). One of the best second-order 
statistics based measure to evaluate this is via the squared Pearson 
correlation coefficient (SPCC) [1]. We define the SPCC between 
z(k) andxfd(k) as 

2 E2 [z7'(k)Xfd(k)] 
PZXfd (H) = E W(k)z(k)] E [X�(k)Xfd(k)] 

tr (HRxHT) 
tr(HRyHT) . 

(9) 

In the same manner, we define the SPCC between z(k) and vfn(k) 
as 

2 E2 [z7'(k)Vfn(k)] 
PZ"fn (H) = E W(k)z(k)] E [VTn(k)Vfn(k)] 

(10) 

tr (HRvHT) 
tr(HRyHT) . 

It is easy to see that 

PiXfd (H) + pi"fn (H) = 1. (11) 

We observe that the SPCCs defined above depend explicitly on 
the filtering matrix, H. This observation suggests that we can use 
the SPCC as a criterion to derive optimal filtering matrices. In the 
rest, we focus only on Pixfd (H). The same results can be obtained 
with Pi"fn (H) because of the relation (11). 

202 

4. OPTIMAL FILTERING MATRICES 

Intuitively, it makes sense to maximize or minimize the SPCC in or­
der to find an estimate ofx(k) or v(k). It is clear that the maximiza­
tion (resp. minimization) of pixfd (H) will give a good estimate of 
x(k) [resp. v(k)], since in this case the SPCC between z(k) and 
Xfd (k) will be maximal (resp. minimal), implying that z(k) is close 
to x(k) [resp. v(k)]. 

The concept of joint diagonalization [17] is going to be useful 
here. The two Hermitian matrices Rx and Ry can be jointly diago­
nalized as follows [17]: 

where 

TTRxT=A, 
TTRyT=h, 

T = [ tl tz tL 
is a full-rank square matrix (of size L xL), 

A = diag (AI, A2, . . .  , AL) 

(12) 

(13) 

(14) 

(IS) 

is a diagonal matrix whose main elements are real and nonnegative, 
with Al 2: A2 2: ... 2: AL 2: 0, and h is the L x L identity matrix. 
Furthermore, A and T are the eigenvalue and eigenvector matrices, 
respectively, of RylRx, i.e., 

(16) 

The matrices containing the first P and last Q eigenvectors of 
RylRx are, respectively, 

(17) 

and 
TQ = [ tL-Q+l h-Q+2 tL ]. (18) 

These two matrices will be used soon. We deduce from (12) and (13) 
that Rv can also be diagonalized as 

(19) 

Since Rv is positive semi-definite, it is straightforward to deduce 
that 

o :S At :S 1, I = 1, 2, ... , L. (20) 

It can be shown that 

AL :S pixfd (H) :S AI. (21) 

The previous inequalities give tighter bounds as compared to the 
well-known ones, i.e., 0 :S pixfd (H) :S 1, and also give nice links 
between the SPCC and joint diagonalization. 

We define the output SNR as 

(22) 

Therefore, the SPCC can also be expressed as a function of 
oSNR (H), i.e., 

2 oSNR(H) 
PZXfd (H) = 

1 + oSNR (H) . 
(23) 

Using (21), we easily deduce the lower and upper bounds for the 
output SNR: 

�<oSNR(H)<�. 
1 -AL - - 1 -Al 

(24) 



4.1. Maximization of the SPCC 

It should be clear now that the maximization of (9) leads to an esti­

mate of the desired signal. Assume that the largest eigenvalue. )11. of 

the matrix R; 1 Rx is of multiplicity pl. The corresponding eigen­

vectors are tl, t2, . . .  , tp. Let the filtering matrix be of the form: 

(25) 

where e p =I 0 is an arbitrary matrix of size M x P. It is clear that 

He p maximizes (9) and 

(26) 

Therefore. the estimate of x( k) is 

(27) 

Since the spec is maximized, so is the output SNR. We deduce that 

oSNR(Hep) = � 2: iSNR. 
1 -/\1 

(28) 

Now. we need to determine e p. The mean-squared error (MSE) 

between x(k) and xe p (k) is 

J (Hep) = tr [E { [x(k) -Hepy(k)] [x(k) -HepY(k)]T}] 

= tr (Rx -2liRxH�p + HepRyH�p) 

= Jds (Hep) + Jm (Hep) , (29) 

where Rx is the correlation matrix of x( k) , Ii = [ 1M 0] is the 

identity filtering matrix (of size M x L), with 1M being the M x M 
identity matrix, 

is the distortion-based MSE, and 

Jm (Hep) = tr (HepRvH�p) (31) 

= tr (epT�Rv Tpe�) 

is the power of the residual noise. From (29), we observe that we 

have at least two obvious options to find e p. 
The first option consists of minimizing J (Hep). We easily get 

(32) 

Then, we deduce the reduced-rank Wiener filtering matrix: 

HRRW = liRxTpT�. (33) 

For P = L, HRRW becomes the classical Wiener filtering matrix, 

i.e., 

(34) 

lIn practice, we may consider the P largest eigenvalues of RylRx. 
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In the second option. we minimize Jds (He p). This leads to 

the minimum distortion (MD) filtering matrix: 

(35) 

where it is assumed that the rank of Rx is at least equal to P. If the 

rank of Rx is exactly P, then HMD becomes the minimum variance 

distortion less response (MVDR) filtering matrix. If, indeed. Al is of 

multiplicity P, (35) simplifies to 

1 T HMD = A1
1iRxTpTp. 

4.2. Minimization of the SPCC 

(36) 

Assume that the smallest eigenvalue, AL, of the matrix R;IRx 
is of multiplicity Q2. The corresponding eigenvectors are 

h-Q+l, tL-Q+2, . . .  , h. Let the filtering matrix be of the form: 

(37) 

where eQ =I 0 is an arbitrary matrix of size M x Q. It is clear that 

Heq minimizes (9) and 

(38) 

Therefore, the estimates of v(k) and x(k) are, respectively, 

(39) 

and 

(40) 

where 

(41) 

is the equivalent filtering matrix for the estimation of x( k). 
There are at least two interesting ways to find eQ. The first one 

is from the power of the residual noise. i.e., 

Jm (Heq) 

= tr [E { [v(k) -Heq v(k)] [v(k) -Heq v(k)]
T}] 

= tr (Rv -2liRvH�q + HeqRvH�q) , (42) 

where Rv is the correlation matrix of v(k). The second possibility 

is from the MSE between x( k) and Xeq (k) , i.e., 

The minimization of Jm (Heq) with respect to eQ gives 

(44) 

As a result, 

(45) 

2In practice, we may consider the Q smallest eigenvalues of RylRx. 



and the minimum noise (MN) filter for the estimation of x(k) is 

H�N =Ii [1£ -RvTQ (T�RvTQr
l
T�]. (46) 

If, indeed, AL is of multiplicity Q, (46) simplifies to 

H�1N = Ii (1£ -
1 -\L Rv T Q T�) . (47) 

By minimizing the MSE, we find another reduced-rank Wiener 

filtering matrix: 

H�RW = Ii [1£ -RvTQ (T�RyTQ r1 T�] 

= Ii (1£ -RvTQT�) , 

(4S) 

which is different from HRRW. However, for Q = L, (4S) becomes 

H�RW = Ii (1£ -RvR;l) = Hw, 

which is the conventional Wiener filtering matrix. 

5. SIMULATIONS 

(49) 

In this section, we study the noise reduction performance of the 

deduced filtering matrices through simulations. The clean signal 

used is a 30-second long speech recorded from a female speaker 

in a quiet office room with a sampling frequency of S kHz. The 

noise signal is a mixture of white Gaussian noise and a periodic 

signal (consisting of six harmonics with a fundamental frequency 

of 200 Hz, and the amplitudes of the harmonics are, respectively, 

1,0.8,0.5,0.35,0.2,0.1). The ratio between the intensity of the pe­

rIodiC signal and the white noise is 6 dB. The noisy signal is obtained 

by adding this noise into the clean speech with an input SNR of 10 d­

B. 

The correlation matrix Ry at every time instant k is computed 

using a short-time average with the most recent 600 samples (75 ms 

long). The matrix Rv is computed directly from the noise signal 

also by a short-time average but with the most recent 960 samples 

(120 ms long). Then the matrix Rx is computed according to Rx = 

Ry -Rv (to ensure that this estimated speech correlation matrix 

is positive semi-definite, the eigenvalue decomposition is applied to 

It and all the small eigenvalues are set to zero). We use the output 

SNR as defined in (22) and the speech distortion index as measures 

to evaluate performance. The speech distortion index is defined as 

Vsd = 
tr {E ( [Xfd(k) -x(k)] [Xfd(k) -x(klf) } 

tr (Rx) (50) 

Several experiments were carried out to evaluate the impact of 

the values of the parameters L, M, P, and Q on the noise reduction 

performance. Due to space limit, we present one set of experiments 

in which we set M = 10, P = L/2, and Q = L/2, and study the 

performance of different filtering matrices as a function of the filter 

length L. 
Figure 1 plots the results. It is clearly seen that the filter length L 

plays an important role in noise reduction performance. As the val­

ue of L increases from 10 to SO, the output SNR increases while the 

speech distortion index decreases for all the studied filtering matri­

ces. However, as one can see, for L ::; 40, the output SNR increases 

and the speech distortion index decreases quickly. After that, both 

performance measures do not change much by further increasing L. 
Note that as the value of L increases, the computational complexity 
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Fig. 1. Performance of the reduced-rank Wiener, MD, MN, and an­

other reduced-rank Wiener filtering matrices as a function of the 

filter length L: (a) output SNR and (b) speech distortion index. 

iSNR = 10 dB and M = 10. 

also increases. As a consequence, the selection of the filter length L 
is a compromise between the noise reduction performance and the 

computational complexity. From the results shown, one can see that 

40 is a good choice. 

It is observed that the output SNR of the reduced-rank Wiener 

and MD filtering matrices is higher than that of the other two filter­

ing matrices. This is understandable since the reduced-rank Wiener 

and MD filtering matrices are derived from the maximization of the 

SPCC, which also maximizes the output SNR. In comparison, the 

MN and the other reduced-rank Wiener filtering matrices have a s­

maller speech distortion index. This is not surprising since these two 

filtering matrices are derived from the minimization of the SPCc. 

6. CONCLUSIONS 

This paper studied the single-channel noise reduction problem in the 

time domain with a filtering matrix. To obtain the optimal filtering 

matrix, we utilized the SPCC between the enhanced signal and fil­

tered desired signal as the cost function. We showed how to derive 

the reduced-rank Wiener and minimum distortion (MD) filtering ma­

trices by maximizing the SPCC and the minimum noise (MN) and 

another reduced-rank Wiener filtering matrices by minimizing the 

SPCC. 

7. RELATION TO PRIOR WORK 

Noise reduction is a challenging problem, which has attracted a sig­

nIficant amount of attention over the past decades due to its broad 

range of applications. Many methods and algorithms have been de­

veloped to deal with this challenging problem [IJ- [ 16]. Traditional­

ly, the noise reduction problem in the time domain is achieved with 

a filtering vector derived from the MSE criterion [7-13]. Recently, 

the SPCC was introduced as the cost function, which has been very 

useful in dealing with the noise reduction problem [ 1, 12J. In this 

paper, based on the SPCC, we generalized the sample-based filter­

ing technique [12] to a block-based filtering framework and showed 

how to derive different optimal filtering matrices. 
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