
Multiframe Echo Suppression Based on Orthogonal Signal Decompositions

Hai Huang1,2, Christian Hofmann2, Walter Kellermann2, Jingdong Chen1, and Jacob Benesty3

1 IAIC Research Center, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
1 Email: huanghai@mail.nwpu.edu.cn, jchen@nwpu.edu.cn
2 Multimedia Communications and Signal Processing, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
2 Email: {hai.huang, christian.hofmann, walter.kellermann}@fau.de
3 INRS-EMT, University of Quebec, Montreal, QC H5A 1K6, Canada
3 Email: benesty@emt.inrs.ca

Abstract
Acoustic echo arises due to the acoustic coupling between a loud-
speaker and a microphone in a full-duplex voice communication de-
vice. Recently, the use of only acoustic echo suppression (AES) has
been proposed without precise echo path estimation. In this paper,
we propose an extension to the scheme of the multiframe Wiener fil-
ter. A non-parametric variable step-size (NPVSS) normalized-least-
mean-square (NLMS) algorithm is used to estimate the echo signal
in every STFT bin and time frame. Based on the orthogonal signal
decompositions, we discuss how to form different echo suppression
filters by optimizing different cost functions. We cover the design
of the Wiener, MVDR, tradeoff, and LCMV filters. From a theoret-
ical point of view, the Wiener and tradeoff filters are identical to the
MVDR filter up to a scaling factor. Experimental results demonstrate
that the developed filters can efficiently attenuate the undesired echo
and the estimate near-end signal with little distortion.

1 Introduction
Controlling the detrimental effect of acoustic echoes, resulting from
the acoustic coupling between a loudspeaker and a microphone,
for applications like teleconferencing and hands-free communication
systems has been investigated for several decades and is still an active
research topic [1–3]. In the literature, two fundamental techniques,
i.e., acoustic echo cancellation (AEC) and acoustic echo suppression
(AES), have been developed to eliminate or reduce the undesired
echoes.

Since the successful design of the first adaptive echo canceler
[4], plenty of adaptation algorithms have been proposed [5], and
AEC has reached a mature state nowadays. Ideally, AEC can re-
move the echoes from the microphone signal without mutilating the
desired near-end speech. Usually, AEC is combined with a post-filter
(subband suppressor) to eliminate the residual echo [6] which oc-
curs whenever the filter length is not long enough [2], the echo path
changes [7], or when there is nonlinearity in the echo path [8].

Alternatively, acoustic echoes can be attenuated by using AES,
which acts similarly to the above-mentioned post-filter with com-
pletely discarding the AEC part. Generally, AES achieves echo at-
tenuation using parametric spectral modification algorithms on the
microphone signal in the frequency domain [9–16]. The major ad-
vantages of AES over AEC is robustness against echo path changes
and double-talk [10]. Furthermore, the computational complexity of
AES is usually also lower than that of AEC. Recently, we proposed a
new framework of AES by considering the interframe correlation in
STFT domain and derived a parametric Wiener subband filter based
on that [17]. By adjusting two parameters in the parametric Wiener
filter, we can control the level of the residual and identify a proper
tradeoff between the amount of echo attenuation and the degree of
near-end speech distortion.

In this paper, we extend the idea in [17] by employing orthogo-
nal signal decompositions to develop different echo suppression fil-
ters, such as the Wiener, MVDR, tradeoff, and LCMV filters, that
can exploit the interframe information. Section 2 describes the signal
model and the formulation of the echo suppression problem in the
STFT domain. Then, in Section 3, different echo suppression filters
are derived by optimizing different cost functions based on orthogo-
nal signal decompositions. The remaining sections give simulations
results of the echo suppression filters and conclusions.
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Ŷ (k,m)
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Figure 1: Block diagram of echo suppression by applying an
FIR filter in the STFT domain (taken from [17]).

2 Problem Formulation
Let us consider the conventional signal model shown in Fig. 1, where
acoustic echoes are generated from the linear coupling between a
loudspeaker and a microphone [2]. Therein, the discrete-time mi-
crophone signal at time index n can be written as

d(n) = u(n)+g(n)∗x(n) = u(n)+y(n), (1)

where u(n) is the near-end signal, x(n) is the loudspeaker (or far-
end) signal, g(n) is the impulse response from the loudspeaker to the
microphone, and y(n) is the echo signal. All signals in (1) are con-
sidered to be real-valued, zero mean, and broadband and we assume
that u(n) and y(n) are uncorrelated.

Using the STFT, the signal model given in (1) can be expressed
in the time-frequency domain as

D(k,m) = U(k,m)+Y (k,m), (2)

where D(k,m), U(k,m), and Y (k,m) are the STFTs of d(n),
u(n), and y(n), respectively, at time frame m and frequency bin
k ∈ {0,1, . . . ,K−1}.

For the purpose of considering interframe signal correlation later
on, we concatenate L consecutive frames of the microphone signal at
the frequency bin k to a vector

d(k,m) = [D(k,m)D(k,m−1) · · · D(k,m−L+1)]T

= u(k,m)+y(k,m), (3)

where the superscript T denotes transposition, and u(k,m) and
y(k,m) are defined in an analogous way to d(k,m).

Since u(k,m) and y(k,m) are uncorrelated and of zero mean by
assumption, the correlation matrix (of size L×L) of d(k,m) is

Φd(k,m)
�
= E

{

d(k,m)dH(k,m)
}

=Φu(k,m)+Φy(k,m), (4)

where E {·} denotes mathematical expectation, the superscript H is
the transpose-conjugation operator, and Φu(k,m) and Φy(k,m) are
correlation matrices of u(k,m) and y(k,m), respectively, and are
defined analogously.

We aim at obtaining an estimate Û(k,m) of the desired near-end
signal by applying a finite-impulse-response (FIR) filter to the micro-
phone signal in each subband as illustrated in Fig. 1 [17, 18], i.e.,

Û(k,m) = hH(k,m)d(k,m)

= Uf(k,m)+Yre(k,m), (5)
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where h(k,m) is a complex-valued vector of length L, which con-
tains the coefficients of the FIR filter.

Uf(k,m) = hH(k,m)u(k,m) (6)

is a filtered version of the desired near-end subband signal, and

Yre(k,m) = hH(k,m)y(k,m) (7)

is the residual echo, which is uncorrelated with Uf(k,m).
To further analyze the filtering operation and derive statistically

optimal filters, consider the normalized (subband) interframe corre-
lation vector

γU (k,m) =
E {u(k,m)U∗(k,m)}

φU (k,m)
(8)

= [γU (k,m,0), . . . ,γU (k,m,L−1)]T , (9)

where the superscript ∗ stands for the complex conjugation and

φU (k,m)
�
= E

{

|U(k,m)|2
}

is the variance of U(k,m). As done

in [19], exploiting the stationarity of the signal U(k,m), a backward
prediction of U(k,m− l) decomposes it into two orthogonal compo-
nents

Uc(k,m,l) = U(k,m)γU (k,m,l), (10)
Ui(k,m,l) = U(k,m)−U(k,m)γU (k,m,l), (11)

where Uc(k,m) is the prediction component and Ui(k,m,l) is the
prediction error component. Stacking this prediction and prediction
errors into the vectors

uc(k,m) = U(k,m)γU (k,m), (12)
ui(k,m) = u(k,m)−U(k,m)γU (k,m), (13)

repectively, u(k,m) can be decomposed according to

u(k,m) = uc(k,m)+ui(k,m), (14)

as done in [19]. In the following, uc(k,m) and ui(k,m) will be
referred to as prediction and prediction error components of the near-
end signal, respectively. This decomposition will allow for an explicit
protection the prediction component of the near-end signal later on.

Substituting (14) into (5), we get

Û(k,m) = hH(k,m)[U(k,m)γU (k,m)+

ui(k,m)+y(k,m)]

= Ufd(k,m)+Uri(k,m)+Yre(k,m), (15)

where Ufd(k,m)
�
= U(k,m)hH(k,m)γU (k,m) is a filtered version

of the prediction component and Uri(k,m)
�
= hH(k,m)ui(k,m) is

the filtered version of the prediction error of the near-end signal.
Comparing (15) to (5), one can see that the individual contributions
of the prediction and the prediction error near-end signal component
to its estimate can be assessed individually now. This will be ben-
eficial for analyzing filters exploiting subband correlation to protect
speech later on.

Since the three terms on the right-hand side of (15) are mutually
incoherent, the variance of Û(k,m) is

φ
Û
(k,m) = φUfd(k,m)+φUri(k,m)+φYre(k,m), (16)

where

φUfd(k,m) = φU (k,m)
∣
∣
∣hH(k,m)γU (k,m)

∣
∣
∣
2

= hH(k,m)Φuc(k,m)h(k,m), (17a)

φUri(k,m) = hH(k,m)Φui(k,m)h(k,m)

= hH(k,m)Φu(k,m)h(k,m)−
φU (k,m)

∣
∣
∣hH(k,m)γU (k,m)

∣
∣
∣
2
, (17b)

φYre(k,m) = hH(k,m)Φy(k,m)h(k,m), (17c)

where Φuc(k,m) = φU (k,m)γU (k,m)γH
U (k,m) is the in-

stantaneous correlation matrix of uc(k,m) and Φui(k,m) =

E
{
ui(k,m)uH

i (k,m)
}

is the correlation matrix of ui(k,m).

Furthermore, the subband error signal between the estimated and
desired near-end signals can be written as

ε(k,m) = Û(k,m)−U(k,m)

= εd(k,m)+εr(k,m), (18)

where

εd(k,m)
�
= Ufd(k,m)−U(k,m)

= U(k,m)
[

hH(k,m)γU (k,m)−1
]

(19)

is the signal distortion due to the FIR filter and

εr(k,m)
�
= Uri(k,m)+Yre(k,m) (20)

represents the prediction-error-plus-echo residual. The MSE cost
function is then

J [h(k,m)]
�
= E

{

|ε(k,m)|2
}

= Jd [h(k,m)]+Jr [h(k,m)] , (21)

where

Jd [h(k,m)] = E
{

|εd(k,m)|2
}

= φU (k,m)
∣
∣
∣hH(k,m)γU (k,m)−1

∣
∣
∣
2

(22)

Jr [h(k,m)] = E
{

|εr(k,m)|2
}

= hH(k,m)Φin(k,m)h(k,m) (23)

and

Φin(k,m) =Φui(k,m)+Φy(k,m) (24)

is the prediction-error-plus-echo residual correlation matrix.
It is clear that the objective of echo suppression by

considering the interframe correlation is to find optimal fil-
ters h(k,m) at each frequency-bin k and time-frame m that
would either minimize J [h(k,m)] or minimize Jd [h(k,m)] or
Jr [h(k,m)] with some constraint.

3 Optimal Filters
In this section, we will employ the orthogonal decomposition of the
near-end signal in the STFT domain to derive commonly used fil-
ters for extracting the desired near-end speech and attenuate the echo
component. In particular, we will consider the Wiener, MVDR, and
tradeoff filters. Furthermore, by decomposing the echo term in a sim-
ilar way, we can deduce an LCMV filter, which can handle more than
one linear constraint.

3.1 Wiener

The Wiener filter is easily derived by taking the gradient of the MSE
J [h(k,m)], defined in (21), with respect to h(k,m) and equating the
result to zero [17]:

hW(k,m) =Φ−1
d (k,m)Φu(k,m)i0

=
[

I−Φ−1
d (k,m)Φy(k,m)

]

i0, (25)

where I is the identity matrix of size L×L, and i0 is the first column
of I. Since

Φu(k,m)i0 = φU (k,m)γU (k,m), (26)

we can rewrite (25) as

hW(k,m) = φU (k,m)Φ−1
d (k,m)γU (k,m). (27)

From Section 2, it is easy to verify that

Φd(k,m) = φU (k,m)γU (k,m)γH
U (k,m)+Φin(k,m). (28)

Determining the inverse of Φd(k,m) from (28) with the Woodbury’s
identity [20], and substituting the result into (27), we get another in-
teresting formulation of the Wiener filter:

hW(k,m) =
φU (k,m)Φ−1

in (k,m)γU (k,m)

1+φU (k,m)γH
U (k,m)Φ−1

in (k,m)γU (k,m)
. (29)

If we set L= 1, the Wiener filter reduces to a simple Wiener gain as
in [9–17].
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3.2 MVDR

The frequently used minimum variance distortionless response
(MVDR) filter, originally proposed by Capon [21], is usually derived
in the context of microphone arrays. Remarkably, we can derive such
an MVDR filter with a single sensor only with our framework con-
sidering the interframe signal correlations. We minimize the MSE of
the prediction-error-plus-echo residual, Jr [h(k,m)] in (23), with the
constraint that the desired signal is not distorted. Mathematically, this
is equivalent to

min
h(k,m)

hH(k,m)Φin(k,m)h(k,m)

subject to hH(k,m)γU (k,m) = 1, (30)

for which the solution is

hMVDR(k,m) =
Φ−1

in (k,m)γU (k,m)

γH
U (k,m)Φ−1

in (k,m)γU (k,m)
. (31)

By the no distortion constraint in (30), Ufd(k,m) = U(k,m) be-
comes the desired signal and Uri(k,m) takes the role of an interfering
signal. Hence, the ratio between the desired signal and all interfer-
ing components (the prediction-error-plus-echo residual) at the filter
output will be referred to as output signal-to-undesired ratio (SUR)

oSUR [h(k,m)] =
φUfd(k,m)

φUri(k,m)+φYre(k,m)

=
hH(k,m)Φuc(k,m)h(k,m)

hH(k,m)Φin(k,m)h(k,m)
, (32)

using (31), we deduce that the output SUR is results in

oSUR [hMVDR(k,m)] = φU (k,m)γH
U (k,m)·

Φ−1
in (k,m)γU (k,m)

�
= λmax(k,m). (33)

Note that the right-hand side of (32) is known as the generalized
Rayleigh quotient [20], and λmax(k,m) is the maximum eigen-
value of the matrix Φ−1

in (k,m)Φuc(k,m); meanwhile hMVDR(k,m)
achieves the maximum output SUR.

Comparing (29) and (31) reveals that the Wiener and MVDR fil-
ters are simply related by

hW(k,m) = αhw(k,m)hMVDR(k,m), (34)

where αhw(k,m) = λmax(k,m)/(1+λmax(k,m)). Obviously, the
MVDR filter does not distort the desired near-end signal in theory.

3.3 Tradeoff

Similar to the tradeoff filter for noise reduction in [19], we will per-
form a tradeoff between echo attenuation and speech distortion. To
this end, we consider a cost function

JT,μ [h(k,m)]
�
= Jd [h(k,m)]+μJr [h(k,m)] , (35)

which is the weighted superposition of the speech distortion index
Jd [h(k,m)] in (22) and the energy of the prediction-error-plus-echo
residual Jr [h(k,m)] in (23), and where the tradeoff parameter μ > 0
controls the proportion between the echo attenuation and speech dis-
tortion. By minimizing JT,μ [h(k,m)] with respect to h(k,m), we
obtain the echo-suppression tradeoff filter as

hT,μ(k,m) = φU (k,m)[φU (k,m)γU (k,m)γH
U (k,m)

+μΦin(k,m)]−1γU (k,m)

=
φU (k,m)Φ−1

in (k,m)γU (k,m)

μ+λmax(k,m)
. (36)

Again, we observe here as well that the tradeoff and MVDR filters
are equivalent up to a scaling factor, i.e.,

hT,μ(k,m) = αT,μ(k,m)hMVDR(k,m), (37)

where αT,μ(k,m) = λmax(k,m)/(μ+λmax(k,m)).
Note that the tradeoff filter does not provide an analytical expres-

sion the optimum tradeoff parameter μ — it has to be determined
heuristically. Interestingly, there are two special cases:

• μ = 1, hT,1(k,m) = hW(k,m), which is the Wiener filter de-
rived in Section 3.1, and

• μ = 0, hT,0(k,m) = hMVDR(k,m), which is the MVDR filter
derived in Section 3.2.

In general, increasing μ results in lower residual echo at the expense
of higher speech distortion and vice versa for a decreasing μ.

3.4 LCMV

We can derive a linearly constrained minimum variance (LCMV) fil-
ter [22] which can handle more than one linear constraint, by exploit-
ing the structure of the echo signal as well as the desired near-end
speech.

In Section 2, we decomposed u(k,m) into two orthogonal com-
ponents. Additionally, we can also decompose the echo signal vector
y(k,m) into orthogonal terms according to

y(k,m) = Y (k,m)γY (k,m)+yi(k,m), (38)

where γY (k,m) and yi(k,m) are defined in a similar way as
γU (k,m) and ui(k,m). The objective of the LCMV filter
is to perfectly recover the desired near-end speech component
U(k,m), and to completely attenuate the predictable echo compo-
nent Y (k,m)γY (k,m). Putting the two constraints together in a
matrix form as

ΓH(k,m)h(k,m) = i, (39)

where Γ(k,m) = [γU (k,m) γY (k,m)] is our constraint matrix of
size L×2, and i= [1 0]T .

Then, the optimal filter is obtained by minimizing the energy at
the filter output with the constraints in (39), i.e.,

min
h(k,m)

hH(k,m)Φd(k,m)h(k,m)

subject to ΓH(k,m)h(k,m) = i. (40)

The solution to (40) is given by

hLCMV(k,m) =Φ−1
d (k,m)Γ(k,m)·

[

ΓH(k,m)Φ−1
d (k,m)Γ(k,m)

]−1
i, (41)

assuming that ΓH(k,m)Φ−1
d (k,m)Γ(k,m) is invertible.

4 Experimental Results

4.1 Experimental Setup

In our experimental setup, the far-end and near-end speech signals
are recorded in an anechoic room from male and female talkers with
a sampling rate of 8 kHz, separately. The echo signal is obtained
by convolving the far-end signal with a measured impulse response
from an acoustic chamber of size 6.7m×6.1m×2.9m with a rever-
beration time T60 ≈ 380ms and a loudspeaker-microphone distance
of 1.5m. The microphone signal is then synthesized by superimpos-
ing this echo with near-end speech at a near-end-signal-to-echo ratio
(NER) of 5dB and with white Gaussian noise at a signal-to-noise ra-
tion (SNR) of 30dB.

The subband processing is done with a DFT-modulated filterbank
with a DFT length of K = 256 and 75% overlap between neighboring
frames and a Kaiser window both in the analysis and synthesis stage.

The implementation of the echo suppression filters derived
in Section 3 requires the estimation of the correlation matrices
Φd(k,m), Φy(k,m), and Φu(k,m), the normalized interframe cor-
relation vectors γU (k,m) and γY (k,m), and the signal variance
φU (k,m). In all experiments, an NPVSS NLMS algorithm is used
to estimate the echo component Ŷ (k,m) in every frequency bin k
and time frame m in the STFT domain [6, 23]. The Φd(k,m) and
Φŷ(k,m) matrices are then computed with a rank-1 update approach
[24]:

Φz(k,m) = λΦz(k,m−1)+(1−λ)z(k,m)zH(k,m), (42)

where λ ∈ (0,1) is a forgetting factor, and z(k,m) ∈ {d(k,m),
ŷ(k,m)}. Note that in our simulations, we use the first 100 frames
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Figure 2: Performance of different echo suppression filters,
i.e., the tradeoff filter with the vary value of μ from 0 to 5,
and the LCMV filter: (a) ESG and (b) speech distortion index
υsd. λ= 0.35 and L= 4. The echo path changes at 5 seconds,
and the situation of double-talk is considered between 9 and
17 seconds.

to compute the initial estimates of the Φd(k,m) and Φŷ(k,m) ma-
trices with a short-time average. Finally, all the other parameters are
estimated in the following way: Φu(k,m) =Φd(k,m)−Φŷ(k,m),
φU (k,m) is equal to the first element of Φu(k,m), and γU (k,m)
and γY (k,m) are taken as the first column of the corresponding cor-
relation matrices Φu(k,m) and Φŷ(k,m) normalized by their first
elements, respectively.

To evaluate the echo suppression performance of the designed fil-
ters, we use three performance metrics: echo suppression gain (ESG),
near-end speech distortion index, and and the perceptual evaluation of
speech quality (PESQ) measure [25]. The ESG, which is also called
echo-return loss enhancement (ERLE) in AEC [1], is defined as

ESG(n) = 10log10
E
{
y2(n)

}

E
{
y2

re(n)
} , (43)

and the near-end speech distortion index [18] is given by

υsd(n) = 10log10

E
{

[u(n)−ufd(n)]
2
}

E
{
u2(n)

} , (44)

where yre(n) and ufd(n) are the time-domain signals reconstructed
from Yre(k,m) and Ufd(k,m), respectively.

Through repeated experiments, we find that the best performance
is achieved with the forgetting factor λ = 0.35 and the length of the
FIR filters L= 4, so they are set as the basic experiment conditions in
our simulation setup. In order to evaluate the tracking capabilities of
all the designed filters, an echo path change is simulated in the exper-
iments by shifting the impulse responses in the near-end location to
the right by 100 samples at 5 seconds. The problem of double-talk de-
tection has been widely studied in the literature but is out of the scope
of this paper. Therefore, an “ideal” detector is used to stop the filter
adaptation during double-talk periods between 9 and 17 seconds.

4.2 Simulation Results

In the following, we investigate the performance of the tradeoff filter
for four conditions: μ = 0, 0.5, 1, and 5. Recall that, according to
Section 3.3, a tradeoff filter with μ = 0 corresponds to the MVDR
filter and μ = 1 leads to a Wiener filter. The performance of the
LCMV filter is also considered here. The experimental result of the
traditional Wiener filter (with L = 1, as mentioned in Section 3.1) is
plotted for comparison.

hT,0

(= hMVDR)
hT,0.5 hT,1

(= hW)
hT,5 hLCMV
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Figure 3: The PESQ score of different echo suppression fil-
ters with λ = 0.35 and L = 4. The blue bars are the PESQ
score calculated between u(n) and the raw microphone signal
d(n), whereas the red bars are the PESQ score calculated be-
tween u(n) and its estimates û(n) from the developed echo
suppression filters.

Fig. 2 depicts ESG and speech distortion index for these filters.
To visualize the echo suppression performance, the residual echo and
estimated near-end signals obtained with the Wiener filter are also
added in the subfigures (a) and (b) of Fig. 2, respectively. As can
be seen, as the tradeoff parameter μ increases from 0 to 5, higher
ESG is obtained at the output of the tradeoff filter, but the speech
distortion index increases as well. This provides a nice way to make
a compromise between echo attenuation and near-end speech distor-
tion. Comparing the performance of the Wiener, MVDR and LCMV
filters, reveals that the MVDR achieves less ESG than the Wiener
filter, but preserves the desired near-end speech without much distor-
tion, as expected. The LCMV does not distort the desired near-end
speech either, while still achieving higher ESG than the MVDR, due
to the additional constraint on the unwanted echo component. Fig. 2
also shows the behavior after an abrupt system changes at 5 seconds.
In this case, the tradeoff filter with larger value of μ tracks faster than
its smaller value counterpart. For all of the designed filters, we no-
tice that they can achieve more than 25 dB echo attenuation and the
near-end speech distortion is less than −40 dB during the double-talk
periods, which can satisfy the requests of many applications. Com-
paring the results of the designed filters with L= 4 with those of the
traditional Wiener gain with L = 1, one can see that the reconver-
gence rate of the traditional Wiener gain (the dashed yellow line) is
a little bit faster than the designed filters, but it yields a much lower
ESG and much more speech distortion to the desired near-end speech
than the designed filters. This shows the advantages of considering
the interframe correlation information in echo suppression.

Furthermore, we evaluate the quality of the desired near-end
speech estimated by different filters through the PESQ measure and
the result are presented in Fig. 3. For the tradeoff filter, one can see
that the PESQ score first increases and then decreases as the value
of μ increases. This is because both ESG and speech distortion in-
dex increase with μ: For a smaller μ, the speech distortion index is
very low and increasing μ can help obtaining higher ESG, thereby
improving the PESQ score. Nonetheless, when increasing the value
of μ continuously, the near-end speech distortion becomes higher as
well and becomes the principal factor degrading the PESQ perfor-
mance. The highest PESQ is obtained when μ is varied from 0.5 to
1, that is why we are interested in the tradeoff filter. Meanwhile, the
PESQ performance of the LCMV is located between the MVDR and
Wiener filters.

5 Conclusions
In this paper, we considered the problem of AES by considering the
interframe correlation in the STFT domain. Based on the orthogonal
signal decompositions, we reformulated the Wiener, MVDR, trade-
off, and LCMV filters by solving different optimization problems.
Through theoretical analysis, we demonstrated that the Wiener and
tradeoff filters are equivalent to the MVDR filter up to a scaling fac-
tor. By adjusting the tradeoff parameter μ, a reasonable compromise
between the amount of echo attenuation and the degree of near-end
speech distortion is achievable. The theoretical studies were finally
corroborated by the simulation of actual AES systems.
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