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ABSTRACT 

Time delay estimation (TDE) plays an important role in localizing 
and tracking radiating acoustic sources. Although many efforts have 
been devoted to this problem in the literature, the robustness ofTDE 
with respect to noise and reverberation remains a great challenge for 
practical systems. In this paper, we investigate the TDE problem in 
acoustic single-input/multiple-output (SIMO) systems in reverber­
ant and noisy environments. We first define a Cauchy estimator in 
the frequency domain, which is robust in dealing with speech as the 
SIMO system's excitation. This robust estimator is then used to con­
struct a cost function, from which a robust multichannel frequency­
domain adaptive filter is deduced. This adaptive algorithm is subse­
quently employed to blindly identify the acoustic impulse responses 
between the source and the microphones. Finally, the time difference 
of arrival is determined from the identified channel responses. 

Index Terms-Acoustic source localization , time delay estima­
tion, microphone arrays, multichannel frequency-domain adaptive 
filter. 

1. INTRODUCTION 

Time delay estimation (TDE), which aims at measuring the time 
difference of arrival (TDOA) based on the signals captured by an 
array of sensors, plays a crucial role in hands-free speech commu­
nications for localizing and tracking radiating acoustic sources [1], 
[2]. A great deal of efforts have been devoted to this problem in 
the literature and many methods have been developed including the 
well-known generalized cross-correlation (GCC) method [3], [4], 
the blind channel identification based techniques [5]- [9], the mul­
tichannellinear prediction based approaches [10]- [12], the informa­
tion theory based algorithms [13]- [15], etc. While most of these 
approaches can achieve reasonable accurate estimates in favorable 
environments, the robustness of TDE remains a challenging prob­
lem. There are three major sources that affect significantly the per­
formance of TDE: noise, reverberation, and nonstationarity and non­
whiteness of the excitation signals. To deal with the three factors and 
improve the robustness of TDE in practical systems, we develop in 
this paper a robust multichannel approach to TDE in acoustic single­
input/multiple-output (SIMO) systems. First, we use the Cauchy es­
timator to define a frequency-domain cost function , which is subse­
quently used to deduce an adaptive multichannel algorithm to blindly 
identify the acoustic SIMO system. This adaptive algorithm is subse­
quently employed to blindly identify the acoustic impulse responses 
between the source and the microphones. Finally, TDOA is deter­
mined from the identified channel responses. 
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2. ROBUST TDE VIA FREQUENCY-DOMAIN BLIND 
SYSTEM IDENTIFICATION 

2.1. Robust Adaptive Blind Multichannel Identification 

Assume that an acoustic SIMO system is composed of one acoustic 
source and M microphones. Usually, this multichannel system can 
be blindly identified based on the well-known cross relation that the 
output of anyone channel convolved with the impulse response of 
another channel is equal to the output of that other channel convol ved 
with the impulse response of this channel if the additive noise is ne­
glected [16], [17]. With a system of M channels and in the presence 
of additive noise or/and modeling errors, one can write the following 
error signals [18] , [19]: 

T - T -eij(n) = X i (n)hj(n) - Xj (n)hi(n) , (1) 

where i, j = 1, 2, ... , M , i oF j , eij(n) is the a priori error signal 
between the i th and jth channels, X i is the observation signal vec­
tor of the i th channel of length L , and hi(n) is an estimate of the 
impulse response vector h i of the ith channel of length L at time n. 
The error signal can be used to define a conditional cost function via 
a square function or a robust cost function based on an M-esti mator 
in the time domain [19] . 

For typical acoustic channels, the magnitude of their transfer 
functions is often flat. However, the amplitude spectra of the ex­
citation signals, which are speech most of the time, typically have 
an impulse-like structure [20], In the course of adaptive iteration, 
the impulse responses hi(n) and hj(n) are often estimated crudely, 

which implies that [hi (n) * hj(n) - hj(n) * hi(n) ] (* denotes lin­
ear convolution) is such far away from zero that it emphasizes the 
presence of the impulsive spectrum of the excitation signal s( n) in 
the amplitude spectrum of the error signal eij(n). As a result, the 
frequency-domain cost function based on the square error is domi­
nated by the large peaks in the spectra of the excitation speech sig­
nals, which seriously affects the accuracy and robustness of chan­
nel identification. In this paper, we consider to transform the error 
signal eij (n) into the frequency domain denoted as fij (n) to de­
velop an adaptive frequency-domain algorithm for the improvement 
of channel identification with speech excitations. Then, we propose 
to define a cost function based on an M-estimator: 

M - l M mL+ L - l 

Jp(m) = L L L P [lfij(n) l] , (2) 
i= l j=i+ l n=mL 

where 

[fij(mL) f ij(mL + 1) ... fij(mL + L _l)]T = ~ij(m) 
01 10- 10-

= Q Lx2L [D Xi (m)Q2LxLfrj(m) - D Xj (m)Q2LXLfr;(m)], 
(3) 
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Fig. 1. Comparison between the square function and the Cauchy 
estimator (with c = 5.0) in the frequency domain. 

DXi (m) = diag{F2LX2Lx i,2L(m)} , 

Xi,2L(m) = [xi(mL - L) xi(mL - L + 1) 

xi(mL + L - 1)]T , 

g1\2L = F LxL [ OLXL hXL ] F ;-ix2L, 

g~LL = F 2L X2L [ hXL OLxL JT FL~ L ' 
iii(m) = FLX d~i(m) , 

(4) 

(5) 

(6) 

(7) 

(8) 

FLXL and FL~L are, respectively, the Fourier and inverse Fourier 
matrices of size L x L, 0 Lx L is the null matrix of size L x L , h x L 
is the identity matrix of size L x L, diag[·] denotes a diagonal matrix 
with diagonal entries from the indicated vector, m is the block index, 
and p[.] is a robust frequency-domain M-estimator. In this work, we 
use the Cauchy estimator [21], which is written as 

(9) 

where the parameter c is a positive constant. The comparison be­
tween the Cauchy estimator (with c = 5.0) and the square function 
is illustrated in Fig. 1. As can be seen, if the a priori errors are 
small, the two cost functions are of similar change rate, indicating 
that both of them can yield similar adapt ion performance. In com­
parison, the Cauchy estimator deemphasizes the large errors caused 
by large spectral peaks of speech. This property of the Cauchy es­
timator can help improve the performance of the frequency-domain 
adaptive filter with speech excitation. Note that one may use other 
types of M-estimators, such as the Huber estimator [22]. The advan­
tage of the Cauchy estimator is that it is continuously differentiable. 
So, it is mathematically easier to derive rigorous robust adaptive fil­
ters. 

In this work, we use the iterative Newton's method to derive the 
adaptive algorithm that minimizes the cost function Jp(m) [23]. To 
do so, we need to calculate the gradient of Jp(m) with respect to 

ii:(m) (where the superscript * denotes the complex conjugate) and 
the corresponding Hessian matrix. 

First, the gradient of Jp(m) with respect to ii:(m) is deduced 
as follows: 

M mL+ L - l 

= I: I: gi?X2L D ;i(m)ggixL 
i=l n=1nL 

X Un-m L+I P' [lfik(n)l] exp{y arg[fik(n)]} 
M 

= I:giOx 2LD;i (m)QgixL~[~ik(m)], 
i= l 

(10) 

where Ui (i = 1,2, ... ,L) is the ith column of the identity matrix 
hx L, p\) is the first-order derivative of pC) , J = H is the 
imaginary unit, 

giOx2L = F LxL [ hXL OLxL ] F ;-i x2L' (11) 

ggix L = F2Lx2L [ OLXL hX L JT FL~ L' (12) 

~ [§.ik(m)] = 

r 
pi [Ifik (mL) I] exp{J arglfik (mL)]} 1 

pi [If,k(mL + 1) 1] exp{yarg[f,k(mL + I)]} 

pi [If,k(mL + L - 1)1] exp{Jarglf,k(mL + L - I)]} 

The Hessian matrix is then derived as follows: 

It can be checked that 

~{p' [lfik(n) l]exp{yarg[fik(n)]}} * 
ol!k(m) 

o{p' [lfik(n)l] exp{ -J arg[fik (n)]}} of:k(n) 

ofik(n) . oii:(m) 

= {pll [Ifik(n)I] 0J::: ~~~ I exp{ - Jarg[fik(n)]} 

+ I [I f (n)l]oexP{-Jarg[eik(n)]}} o~tk(n) 
p ,k ofik(n) ol!k(m) 

= ~ (n) of:k(n) 
2!lik oii: (m) , 

where p" C) is the second-order derivative of pC), 

(13) 

(15) 

'I) (n) = p" [le (n) l] + pi [l f ik(n)l] (16) 
- ik - ,k Ifik(n)1 ' 

and 
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where 

= ~ [~ik (mL)gFx2LD;i (m)QgixLu1 
~ik (mL + 1)giox2LD ;i (m)Q8i xLu2 

~ik (mL + L - l)Qiox2L D ;i (m)QgixLUL] 

= ~giOx2LD;i (m)QgixLTik (m) , 

T ik (m) = 

(17) 

diagbik(mL) ~ik(mL + 1) ~ik(mL + L - 1)} (18) 

Substituting (17) into (14) , we obtain the Hessian matrix as 

S k(m) = gioX2LPk (m)g~1x L ' (19) 

where 

M 

P k(m) = L D ; i (m)ggix LT ik (m)Q1\ 2L Dxi (m). (20) 
i=1,i,,'k 

Using Newton 's method, we can write the update equations of 
the channel estimates as 

'iik(m + 1) = 'iik(m) - J.LS; 1(m)'VJp (m) , 

k = 1, 2, .. . , M , (21) 

where J.L is the step size. Now, substituting (10) and (19) into (21) 
and pre-multiplying both sides by g~1XL ' we then obtain the update 
equations: 

w - w - w g2LxLf1k(m + 1) = g2LxLf1k(m) - J.Lg2LxL 

x [giox2L Pk (m)Q~1x L] - 1 
M 

X Lgiox2LD;i (m)QgixL't'. [~ik(m) l , 
i= l 

k = 1,2, ... , M. (22) 

After some simple mathematical manipulation, we obtain the sim­
plified update equations: 

M 
- w - w 1 """ f1k (m + 1) = f1k (m) - J.LfP; (m) L.. D ; i (m) 

i = l 

X ,:£01 [~ik (m) ] , k = 1, 2, ... , M , 

where J.Lf = J.L / 2 is a new step size and 

- w w -
f1k (m) = g2LxLf1k(m) , 

,:£01 [~ik (m) ] = ggiXL':£ [~ik (m) ] . 

(23) 

(24) 

(25) 

To simplify the expression of the matrix P k(m) in (20), let us 
approximate (18) with 

where 

Note that 

<Pik (m) = max {1J k(mL + l)}. O:oI:oL- 1 -, 

ggixL T ik (m)Q11x2L = <Pik (m)ggix2L 
1 

~ '2 <Pik(m)I2Lx2L, 

(26) 

(27) 

(28) 

where 

g 01 [ OL XL 2Lx2L = F2LX2L 0 LxL 
OLXL] - 1 
I F2Lx2L' LxL 

(29) 

It follows then that we can write the matrix P k(m) in (20) into a 
diagonal matrix 

1 M 
P k(m) = '2 L <pik (m)D; i (m)Dx i (m). (30) 

i=1,ii"k 

This simplification would considerably reduce the complexity for 
computing the inverse of the matrix P k(m). In implementation, a 
more smoothed power spectrum matrix P k(m) can be obtained by 
the widely used recursive method. 

Same as in [19], [24] , a spectral constraint on the channel im­
pulse responses is introduced into the above algorithm to improve its 
robustness with noise and reverberation. Then, the final frequency­
domain adaptive filter algorithm is as follows: 

- w - w 01 
f1k (m + 1) = f1k (m) - J.Lf'V JNFM ,dm) + J.Lf j3 (m) 

X'VJlS ,k(m) , k = 1, 2, ... , M , (31) 

where 

M 

'V J~~M ,k(m) = p;1(m) L D ; i (m),:£01 [§.ik (m) ] , (32) 
i=l 

w - w ( I-W 12) 'VJsc ,k(m) = 2f1k (m) 0 12L Xl + f1k (m) , (33) 

j3 (m) is the Lagrange multiplier, 0 denotes element-by-element di­
vision of two vectors , and 12L Xl is a vector of length 2L with all 
the elements being 1. 

2.2. TDE Based on the Robust Adaptive Blind MuItichannel 
Identification 

After the channel impulse responses are adaptively estimated by the 
aforementioned blind multi channel identification algorithm, we can 
then determine the TOOAs by comparing the time differences of 
the direct-path components between different channels. The TOOA 
between two different channels can then be obtained as [1], [25] 

(34) 

3. EXPERIMENTS 

In this section, we study the performance of the proposed al­
gorithm in noisy and reverberant acoustic environments. For 
the purpose of comparison, the performance of the phase trans­
form (PHAT) [1], normalized multichannel frequency-domain least­
mean-square (NMCFLMS) [8], robust normalized multichannel 
frequency-domain least-mean-square (RNMCFLMS) [24], and ro­
bust normalized multichannel frequency-domain least-mean-M­
estimate (RNMCFLMM) [26] algorithms will also be presented. 

3.1. Experimental Setup 

The impulses responses used in this study were made in the Vare­
choic Chamber at Bell Labs [27]. The dimension of the Chamber 
is 6.7 mx6.1 mx2.9 m. For convenience, positions in the room are 
designated by (x , y , z) coordinates with reference to the northwest 
corner of the Chamber floor. We select three microphones from the 
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measuring system in [27] to construct our linear microphone array 
system. The three microphones are located at (2.437, 0.500, 1.400), 
(3.137, 0.500, 1.400), and (3.837, 0.500, 1.400), respectively. A 
sound source is placed at (0.337, 3.938, 1.600). The impulse re­
sponses of the acoustic channels between the source and micro­
phones were measured at a 48 kHz sampling rate when 89% panels 
on the Chamber's walls were open (the corresponding reverberation 
time is 280 ms). Then the obtained channel impulse responses are 
downsampled to a 16 kHz sampling rate and truncated to 1024 sam­
ples. The measured impulse responses are treated as the true impulse 
responses in our blind multichannel identification experiments. 

The source signal is pre-recorded from a male and a female 
speakers. The sampling rate is 16 kHz and the overall length is ap­
proximately 2 min: the former half is from the male speaker while 
the latter half is from the female speaker. The multichannel system 
outputs are computed by convolving the source signal with the cor­
responding measured channel impulse responses and noise is then 
added to the results at a specified signal-to-noise ratio (SNR) value. 
The additive noise used in this work is white Gaussian noise. All the 
parameters are set to be the same as those experiments in [19]. For 
the proposed algorithm, the length of the adaptive filter is 1024, and 
the parameter c is set to 5.0. 

In the experiments, an estimate is yielded every frame with a 
frame size of 64 ms (1024 samples). The total number of frames 
is 1886. Two performance metrics, namely the probability of 
anomalous estimates and the root mean-squared error (RMSE) of 
nonanomalous estimates [10] , [12] , are used to evaluate the perfor­
mance of the proposed algorithm. The true time delays from the 
sound source to the three microphone pairs are respectively T12 = 19 
samples, T13 = 42 samples, and T 23 = 23 samples. 

3.2. Results 

The TOE results of the five studied algorithms are presented in Ta­
ble 1. As seen, the NMCFLMS algorithm performs better than the 
PHAT algorithm. The RNMCFLMS algorithm is more robust to 
moderate noise than the PHAT and NMCFLMS algorithms due to 
the use of a spectral energy constraint; but it suffers from signifi­
cant performance degradation when the noise is strong. The RN­
MCFLMM algorithm almost outperforms the previous three algo­
rithms mainly thanks to the use of the Huber estimator and the al­
ternate employment of the mean-squared error (MSE) and mean­
absolute error (MAE) criteria in the time-domain Huber estimator 
[19]. Among the five studied TOE algorithms, the proposed algo­
rithm obtains the best performance, especially in the environments 
with low SNRs. This enhancement comes from the fact that the 
global frequency-domain adaptive filter uses the frequency-domain 
Cauchy estimator, which is robust to deal with the speech excitation 
signals with impulsive spectra. This new algorithm can be viewed as 
an improved version of the RNMCFLMS and RNMCFLMM algo­
rithms. 

4. CONCLUSIONS 

In this paper, we proposed a global frequency-domain adaptive filter 
algorithm for TOE in acoustic SIMO systems. The Cauchy estima­
tor is used to define a frequency-domain cost function, from which 
a robust frequency-domain adaptive filter is derived to blindly iden­
tify an acoustic SIMO system. This Cauchy estimator is insensitive 
to the impulse-like structure of speech spectra while retains the ap­
proximate adaption ability of the square cost function if the spectra 
of the excitation signals are flat. Moreover, the Cauchy estimator 
is continuously differentiable as compared to the Huber estimator, 
which yields a mathematically rigorous adaptive filter. Experiments 

Table 1. The probability of anomalous time delay estimates and 
RMSE of nonanomalous time delay estimates of the five studied 
TOE algorithms under different levels of the SNR. 

SNR (dB) TDE algorithms '1oan o malies ,'Yo RMSE (samples) 
TI2 T I3 723 T I 2 T 13 T2 3 

PHAT 96.2 96.8 96.0 1.3 1.2 1.3 

- 10 MLrLM~ .) ~').j ~4.1 v.~ v.~ v.~ 

RNMCrLM~ bL. M.L /) . j 1.4 I.) 
KNMnLMM 16.~ 60.3 ~1. I.~ 

roposea j. ).~ ~. V. V.L V. 
PHAI ~V.V ~L.V ~L.I I.v I.L . j 

-5 NMCl'LMS 1.0 Y. 5Y.6 1.0 

11.1 .4 44.j LV V.) V.~ 

R M CrLMM I. .0 LL.~ V.I V.~ 

Proposed .6 .6 1. 2 1.2 

' H A ! b~. '.~ ~I.o V.~ V.~ .L 

0 
NMLrLMS . L L . I.) 

KNMCI'LMS U. I 1.6 U.7 U.6 1.2 1.2 
KNIVILrLlVI1VI V. j V.4 V.4 V.j V. .V 

I'roposea V.L V.O U 
P1Ai 44.6 56. W. I. ~ 

5 <IVILrLIVI~ v.) V.O v.) V. V.J V.J 
V.V V. I.) 

RNMI : I'LMM '. 3 1.2 .1 )A 

roposea V.V V.L V. V.V V.) V. 
PHA ! L~A 3YA bU. I.) I .~ 

10 NMCl'LMS lA 1.6 1.2 1.2 
RNIVILrLM~ V.L V.V V. v . 1 v . V.~ 

R M CrLMM V. V.I I.L V.I V. 1.4 

Proposed I.U 1.2 

conducted in noisy and reverberant environments validate the robust­
ness of the developed TOE approach. 

5. RELATION TO PRIOR WORK 

TOE has attracted a significant amount of attention in the litera­
ture [1] , [2]. Many methods for TOE have been developed, includ­
ing the well-known generalized cross-correlation (GCC) method [3] , 
[4] , the blind channel identification based approach [5]- [9], multi­
channel linear prediction algorithm [10]-[12], the information the­
ory based methods [13]- [15], etc. Among those methods, the blind 
multichannel identification approach based on the NMCFLMS algo­
rithm is very attractive for single source TOE [8], [18]. The under­
lying core idea is that the channel impulse response from the source 
to each microphone is first blindly estimated, and the time delays are 
then determined by comparing the time differences of the direct-path 
components between different channels [1], [8] , [18] . This algo­
rithm is robust to reverberation since reverberation is well mode led 
in the algorithmic formulation ; but it is found sensitive to noise. It 
was extended to an RNMCFLMS method by introducing a flatness 
constraint on the channel transfer functions [24] , [26] ; but the ro­
bustness with respect to noise is still a great challenge particularly 
when SNR is low. In an early work, we developed an RNMCFLMM 
algorithm [19], where a Huber estimator [22] was used to construct 
a robust time-domain cost function , from which we obtain a multi­
channel frequency-domain adaptive filter to blindly identify a SIMO 
system. The RNMCFLMM algorithm is more robust to both non­
Gaussian and Gaussian noise than RNMCFLMS [26]. However, its 
performance suffers from degradations if the excitation signals are 
speech. To improve performance in noisy and reverberant environ­
ments with speech excitation signals, we followed the good proper­
ties in the RNMCFLMS and RNMCFLMM algorithms and mean­
while adopted a Cauchy estimator to define a frequency-domain cost 
function , which deemphasizes the large errors caused by large spec­
tral peaks of speech. From this new cost function, we developed 
a robust adaptive multichannel algorithm to blindly identify acous­
tic SIMO systems from which a multichannel TOE algorithm is ob­
tained. 
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