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Time Delay Estimation via Minimum Entropy
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Abstract—Time delay estimation (TDE) is a basic technique for
numerous applications where there is a need to localize and track a
radiating source. The most important TDE algorithms for two sen-
sors are based on the generalized cross-correlation (GCC) method.
These algorithms perform reasonably well when reverberation or
noise is not too high. In an earlier study by the authors, a more so-
phisticated approach was proposed. It employs more sensors and
takes advantage of their delay redundancy to improve the preci-
sion of the time difference of arrival (TDOA) estimate between the
first two sensors. The approach is based on the multichannel cross-
correlation coefficient (MCCC) and was found more robust to noise
and reverberation. In this letter, we show that this approach can
also be developed on a basis of joint entropy. For Gaussian sig-
nals, we show that, in the search of the TDOA estimate, maximizing
MCCC is equivalent to minimizing joint entropy. However, with
the generalization of the idea to non-Gaussian signals (e.g., speech),
the joint entropy-based new TDE algorithm manifests a potential
to outperform the MCCC-based method.

Index Terms—A coustic source localization, cross-correlation co-
efficient, joint entropy, Laplace distribution, time delay estimation
(TDE).

I. INTRODUCTION

HE aim of time delay estimation (TDE) is to measure the
Trelative time difference of arrival (TDOA) among spa-
tially separated sensors. This technique is widely used in radars
and sonars for localizing radiating sources. Nowadays, the
same technique is used in room acoustics for localization and
tracking of talkers for applications such as speech enhancement
[1], automatic camera tracking for video-conferencing [2], [3],
and microphone array beam steering [4].

Many techniques exist for TDE, but the most popular and
most useful algorithms in practice are based on the general-
ized cross-correlation (GCC) method proposed by Knapp and
Carter [5]. The delay estimate between two sensors is obtained
as the time-lag that maximizes the cross-correlation between
filtered versions of the received signals. This method is well
studied, and it performs fairly well in moderately noisy and
non-reverberant environments [6], [7]. However, this method
tends to break down when reverberation or noise is high and/or
noise is not Gaussian. In alpha-stable distributed noise envi-
ronments, fractional lower order statistics (FLOSs) [8] were
found more robust than the GCC for TDE [9]. However, for
Gaussian or non-impulsive noise, the FLOS-TDE method is
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nothing better than the phase-transform GCC algorithm. Alter-
natively, when more than two microphones are available, the
TDOA measurements between different microphone pairs are
not independent. Therefore, it is possible to generalize the GCC
technique in such a way that all the redundant information can
be fully taken into account for achieving an optimal TDE perfor-
mance in adverse environments. This idea was developed into a
multichannel TDE algorithm based on multichannel cross-cor-
relation coefficient (MCCC) in [10] and [11]. It was found that
the algorithm’s robustness to noise and reverberation gets better
as the number of microphones increases.

While the MCCC-based TDE performs well in the pres-
ence of noise and reverberation, the MCCC is by no means
the only choice for developing the concept of multichannel
TDE. MCCC is a second-order-statistics (SOS) measure of
dependence among multiple random variables and is ideal for
Gaussian source signals. However, for non-Gaussian source
signals, MCCC is not sufficient, and higher order statistics
(HOS) have more to say about their dependence.

The concept of entropy, which is a statistical (apparently
HOS) measure of randomness or uncertainty of a random
variable, was introduced by Shannon in the context of com-
munication theory [12]. As it will be demonstrated later,
minimizing the entropy is, in fact, equivalent to maximizing the
MCCC for TDE if the source signal is Gaussian. While using
MCCC for TDE implies that we deal with Gaussian signals,
using joint entropy can certainly allow us to go beyond this
constraint. In this letter, we show how to use the concept of
minimum entropy in TDE.

This letter is organized as follows. In Section II, we present
the basic concepts of entropy and joint entropy from the infor-
mation theory. Section III describes how MCCC and entropy
are used in TDE and explains why maximizing MCCC and min-
imizing entropy are equivalent for TDE for a Gaussian source.
In Section IV, we show how a minimum-entropy-based TDE al-
gorithm is derived for speech signals that are assumed to follow
Laplace distributions. Simulations are presented in Section V.
Finally, this letter is concluded in Section VI.

II. ENTROPY

In this section, we briefly describe the principles of entropy.

Let x be a random variable with a density p(z). (In this letter,
we choose not to distinguish random variables and their realiza-
tions.) The entropy is defined as [13]

H(s) = = [ plo) np(o)ds
— B {lnp(x)} M)

where E{-} denotes mathematical expectation. The entropy (in
the continuous case) is a measure of the structure contained in
the density p [14].
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Let us now consider /N random variables

X=[x1 zn]”

with joint density p(x); the corresponding joint entropy is

H(x)=—- /p(x) In p(x)dx )
where []T denotes a vector/matrix transpose.
Entropy of a Multivariate Gaussian Distribution: Let
T1,Ts,---,rxN have a multivariate normal distribution with
mean 0 and covariance matrix

R = E{xxT}
2
0%, Tzizs Tzizn
2
Tmlmv O-m‘) Tt T.’L‘Q.’L‘N
= i . . 3
2
Teizny  Teoxny 7 Oxn

The probability density function (pdf) of 21, 2, - - -, xx is then
given by

1 _1yTR-1!
ExTRx 4
(Vam)™ [det(R)] 72 @

By substituting (4) into (2), we can now compute the joint en-
tropy

Hx) =1 / p(x)xTR xdx + In {(\/%)N [det(R)]" 2}

p(x) =

2
= %E‘ {x"R™'x} + %ln {(2m)" det(R)}

- %tr {ER 'xxT]} + %m {(2m)N det(R)}

— g + % In {(27)" det(R)}

= % In {(27re)N det(R)} . (5)

The entropy for any of the random variables z,, n =
1,2,---,N is

H(z,) = % In{2mea? }. (6)

III. APPLICATION TO TIME DELAY ESTIMATION

A. Signal Model

Suppose that we have an array, which consists of /N micro-
phones whose outputs are denoted as x,(k), for n = 1,2,
.-+, N, and with k being the time index. Without loss of gener-
ality, we select microphone 1 as the reference point and consider
that the propagation of the signal from a far-field source to the
array is modeled as

Tn(k) = ansk —t — fu(7)] + wn (k) 7

where a,, n = 1,2,---, N are the attenuation factors due to
propagation effects, ¢ is the propagation time from the unknown
source s(k) to microphone 1, w,, (k) is an additive noise signal
at the nth microphone, 7 is the relative delay between micro-
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phones 1 and 2, and f,(7) is the relative delay between mi-
crophones 1 and n [with fi(7) = 0 and fo(7) = 7). In this
letter, we are considering only linear equispaced arrays and the
far-field case (i.e., plane wave propagation), in which the func-
tion f,, depends on a sole delay

fu(T) = (n = Dr. ®)

In other scenarios, f,, probably involves two or three TDOAs
and also depends on the microphone array geometry. Presum-
ably, though, the exact mathematical relation of the relative
TDOAs is accessible. In addition, the sampling rate needs to
be chosen high enough for sufficient resolution such that the
values of f,,(7)’s are all treated as integers.

It is further assumed that w, (k) is a zero-mean Gaussian
random process that is uncorrelated with s(k) and the noise sig-
nals at other microphones. It is also assumed that s(k) is rea-
sonably broadband.

B. Minimum Entropy for a Gaussian Source

We are interested in estimating only one time delay (7) from
multiple sensors. Obviously, two sensors are enough to estimate
7. However, the redundant information that is available when
more than two sensors are used will help to improve the esti-
mator, especially in the presence of a high level of noise and
reverberation.

Consider the following vector:

xX(k,m) = [w1(k) wo[k+ fo(m)] ... an[k+ fy(m)]"

We can check that for m = 7, all the signals z:, [k + fn(7)],n =
1,2,---, N are aligned. This observation is essential because it
already gives an idea on how to find 7. The covariance matrix
corresponding to the signal x(k, m) is

R(m) = E {x(k,m)x" (k,m)} . )
Therefore, the joint entropy for Gaussian signals is

1

H [x(k,m)] = 5 {(@re)N det [R(m)]}.  (10)
We argue that the value of m that gives the minimum of
H[x(k,m)], for different m, corresponds to the time delay
between microphones 1 and 2. Hence, the solution to our
problem is

7o = argmin H [x(k,m)] (11)
where m € [—Tmax, Tmax)> and Tmax is the maximum possible
delay.

Let us see now why minimum entropy makes sense for TDE.
We define the squared MCCC among the N random variables
T1,T2,- -,y as [10], [11], [15], [16]

det [R(m
p2(m) = 1 - SR

Hn:l 0.9377
We can show that 0 < p2(m) < 1 [11]. If two or more random
variables are perfectly correlated, then p2 = 1. If all the pro-
cesses are completely uncorrelated, then p2 = 0. In [10] and

12)
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[11], it was shown that the MCCC can be used to estimate the
relative delay

7. = arg max p2(m). (13)
It is clear from (10) through (13) that minimizing the entropy

or maximizing the MCCC is equivalent for Gaussian signals, so
that 7. = 7.

IV. APPLICATION TO SPEECH SIGNALS

In room acoustics environments, the sources of interest are
speech signals. It is well known that speech samples are well
modeled by a Laplace distribution [17], [18]. In this scenario,
it makes more sense to take this into account for the estimation
of the entropy. However, as it will be seen in the rest of this
section, this estimation is far from obvious. Also note that since
the noise is assumed to be Gaussian, the signal z,, cannot be
exactly modeled by a Laplace distribution. However, we believe
that this approximation is plausible and will rely on simulations
to justify its viability.

The univariate Laplace distribution with mean zero and vari-
ance o2 is given by

V2 3
= —Z Vil 14
@) =5 e (14)
It is easy to show that the corresponding entropy is [13]
H(z) =1+ In(v20,). (15)

Let z1,29,---,2xn have a multivariate Laplace distri-
bution with mean 0 and covariance matrix R. The pdf of
1,2, " TN is [19]9 [20]

p(x) = 2(2m) "2 [det(R)] ™% (xR~ 1x/2) /2
xKp(V2xTR~1x) (16)
where P = (2 — N)/2 and Kp(-) is the modified Bessel func-

tion of the third kind (also called the modified Bessel function
of the second kind) given by

oo

a2
Kp(a) / exp(—z—4—>dz a>0.
’ (7
The joint entropy is
N

H(x) = %m [(%) det(R)]

—gE {(In(6/2)} - E {1n Kp(\/%)} (18)
with

f=x"R'x. (19)

The two quantities F{In(/2)} and F{In Kp(v/26)} do not
seem to have a closed form. So we need to find a numerical way
to estimate them. One possibility to do this is the following. As-
sume that all processes are ergodic; in this case, we can replace
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Fig. 1. Comparison of performance between the multichannel TDE algorithms

based on MCCC and entropy in an open space. The curves with an x-mark at
each data point correspond to the entropy-based algorithm. The true TDOA be-
tween the first two microphones is 7 = 3 samples.

ensemble averages by time averages. If we have K samples for
each element of the observation vector x(k, m), we propose to
use the following estimators:

E{In(0/2)} Z In[6(k—k',m)/2] (20)
E{anp }z Z 1nKp[\/20 (h—k, )} Q1)
k'=0
with
Ok —k,m)=x"(k -k, mR(m)x(k—k,m). (22)

In practice, we first estimate R(m) with the K observations
of x(k,m). When the covariance matrix is estimated, we use
the same data to estimate (20) and (21). We then compute the
entropy H with (18) for different 77, and the one that minimizes
H will be a good estimate of the relative delay 7.

V. SIMULATIONS

In this section, we will evaluate the performance of the pro-
posed entropy-based multichannel TDE algorithm by simula-
tion. A comparison to the MCCC-based method is presented.

The first experiment was carried out in an open space. The
source is a female speech signal of 512 samples in length. The
addition noise is Gaussian and the signal-to-noise radio (SNR)
is 10 dB. The attenuation factors are randomly selected from
the range 0.5 to 1. The true TDOA between the first two mi-
crophones is three samples. Three linear, equispaced arrays of
two, three, and six microphones were investigated. Fig. 1 visu-
alizes the results. It is clear that both MCCC- and entropy-based
multichannel TDE algorithms perform pretty well in such an en-
vironment with moderate noise and no reverberation. As more
microphones are employed, both algorithms demonstrate better
robustness to noise while the valleys of the entropy curves are
in general sharper than the peaks of their MCCC counterparts.
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Fig.2. Comparison of performance between the multichannel TDE algorithms
based on MCCC and entropy in the varechoic chamber at Bell Labs. The curves
with an x-mark at each data point correspond to the entropy-based algorithm.
The true TDOA between the first two microphones is 7 = 1 sample. Note that
the MCCC has its peak at a wrong position (;m = 0) when only two micro-
phones are used.

In the second experiment, we studied the performance of
these TDE algorithms in a real, reverberant environment. The
channel impulse responses were measured in the Varechoic
chamber at Bell Labs [21]. The chamber is a rectangular room
with 368 electronically controlled panels that vary the acoustic
absorption of the walls, floor, and ceiling [22]. Therefore, the
level of room reverberation is well controlled by the percentage
of open panels. In this experiment, 30% of the panels are open,
which leads to a reverberation time of approximately 380 ms.
The original impulse response were measured at 8 kHz and had
4096 samples. For this experiment, they are truncated to 512
samples. Again, the source is a female speech signal, the addi-
tion noise is Gaussian, and the SNR is 10 dB. The true TDOA
between the first two microphones is one sample. The results
are presented in Fig. 2. We see that when only two microphones
are used, the MCCC has its peak at a wrong position m = 0
while the entropy produces a correct TDOA estimate. As more
microphones are employed, while both algorithms work fine,
the entropy gives much better-defined extrema.

VI. CONCLUSIONS

TDE is a challenging problem in adverse environments with
strong noise and considerable reverberation. In this letter, the
concept of minimum entropy is introduced, and a novel entropy-
based multichannel TDE algorithm is developed. It is explained
that minimizing joint entropy is equivalent to maximizing
MCCC for Gaussian sources. However, for non-Gaussian
sources, entropy is a more comprehensive measure of statistical
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dependence than MCCC. Simulations show that the proposed
minimum-entropy-based TDE algorithm is much more robust
to noise in general and reverberation in particular than the
MCCC-based TDE approach.
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