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The maximum directivity (MD) beamformer with spherical microphone arrays has many salient

features in processing broadband acoustic and speech signals while suppressing noise and reverber-

ation; but it is sensitive to sensors’ self-noise and mismatch among these sensors. One effective

way to deal with this sensitivity is by increasing the number of microphones, thereby improving the

so-called white noise gain (WNG), but this increase may lead to many other design issues in terms

of cost, array aperture, and possibly other performance degradation. This paper is tackling this sen-

sitivity problem and presents a flexible high directivity (HD) beamforming algorithm. By approxi-

mating the ideal directivity pattern and the beamformer’s beampattern with spherical harmonic

series, the relationship between the two is obtained. This relationship is subsequently used to

deduce a flexible HD beamformer, which can improve the WNG while achieving a directivity fac-

tor (DF) between the DF of an Nth-order MD beamformer and that of an ðN � 1Þth-order MD one.

Also derived is the analytical link between the DF and a tuning parameter and the link between the

WNG and this parameter. Based on these links, one can easily determine the optimal value of the

tuning parameter once the value of the DF or the WNG is specified.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5038275
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I. INTRODUCTION

Microphone arrays, which refer to sound acquisition

systems with multiple microphones to sample a sound field,

are widely used in voice communications and human-

machine interfaces. A core component of a microphone array

system is beamforming, which takes the array observation

signals as its inputs to recover a signal of interest and sup-

pressing noise, reverberation, and interference (Brandstein

and Ward, 2001; Benesty et al., 2008). A significant number

of techniques have been developed, such as the superdirec-

tive beamformers (Cox et al., 1986), the robust superdirec-

tive beamformers (Doclo and Moonen, 2007; Wang et al.,
2014), the tunable tradeoff superdirective beamformers

(Crocco and Trucco, 2011), the subspace superdirective

beamformers (Li et al., 2016; Huang et al., 2016a,b); the dif-

ferential beamformers (Elko, 1996; Benesty and Chen,

2012), and adaptive beamformers (Monzingo and Miller,

1980; Gannot et al., 2004), to name but a few. Generally, the

geometry of microphone arrays plays an important role on

the design of the beamforming algorithm and its perfor-

mance. In the literature, different geometries have been

investigated, such as linear (Benesty and Chen, 2012), circu-

lar (Meyer, 2001; Benesty et al., 2015; Huang et al.,

2017a,b), spherical arrays (Meyer and Elko, 2008; Li and

Duraiswami, 2007), and more general geometries

(Abhayapala and Ward, 2002). Relatively, linear arrays are

easy to design; but they are not very flexible in terms of beam

steering, i.e., their performance varies with the look direction.

In applications where full beam steering in the three-

dimensional (3D) space is needed, meaning that the array

response stays the same across different look directions,

spherical arrays are generally preferable (Meyer and Elko,

2008; Abhayapala, 2008; Teutsch and Kellermann, 2006). As

a result, beamforming with spherical microphone arrays

(SMAs) has been intensively studied (Meyer and Elko, 2008;

Rafaely et al., 2007a), and a number of algorithms have been

developed such as sound field decomposition (Meyer and

Elko, 2008; Rafaely, 2005; Zotkin et al., 2008), optimal

modal beamforming (Yan et al., 2011), and eigenbeam proc-

essing (Meyer and Elko, 2008; Sun et al., 2012).

To process speech and audio signals, which are broad-

band in nature, it is important that the beamformer has a

frequency-invariant beampattern and can perform consis-

tently over a large frequency range of interest (Yan et al.,
2007; Benesty and Chen, 2012) [note that there are also

exceptional cases where frequency-independent beampat-

terns are desired to achieve certain spatial effects (Shabtai

and Rafaely, 2014)]. One popular way to design a

frequency-invariant beamformer with SMAs is by employ-

ing the spherical harmonic decomposition, which decom-

poses the sound field into a series of spherical harmonics.
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The beamformer output is then obtained by combining

spherical harmonics with proper weighting coefficients

(Meyer and Elko, 2002; Rafaely and Khaykin, 2011;

Teutsch, 2007). In the spherical harmonic domain, the direc-

tivity factor (DF), which is defined as the ratio between the

directivity pattern at the look direction and the average of

the directivity gain over other directions in the entire space,

can be represented as a function of spherical harmonic series

(Elko and Meyer, 2008). In this case, the maximization of

the DF leads to the frequency-invariant maximum directivity

(MD) beamformer, whose beampattern corresponds to the

hypercardioid (Rafaely, 2015; Benesty and Chen, 2012). The

value of the DF of the MD beamformer depends on the order

(Elko and Meyer, 2008; Rafaely, 2015), i.e., for an Nth-order

MD beamformer, its value is ðN þ 1Þ2. Clearly, the higher is

the order, the higher the value of the DF.

While it has a high DF and, therefore, it is effective in

suppressing reverberation and spatial noise, the MD beam-

former has a very low white noise gain (WNG) at low fre-

quencies. So, it is sensitive to sensors’ self-noise and

mismatch among these sensors (Elko, 2000; Doclo and

Moonen, 2007). This is one major problem that preventing

this beamformer from being used in practice for high orders.

Consequently, how to manage the WNG to a reasonable

level while achieving a relative high value of DF with the

MD beamformer has become an important issue. One way to

do this is with the minimum-norm method by increasing the

number of microphones while fixing the order of the MD

beamformer (Benesty and Chen, 2012; Chen et al., 2014);

but this would lead to many other design issues in terms of

cost, array aperture, microphone mounting, and possibly

other performance degradation as deep nulls (Rafaely et al.,
2007b).

This paper is dedicated to the noise robustness problem

of the MD beamformer with SMAs. We develop a flexible

high directivity (HD) beamformer, which can improve the

WNG and achieve a high DF without changing the number

of microphones and the array geometry. The principle we

take here is to improve the WNG while slightly sacrificing

the value of the DF. However, unlike the minimum-norm

approach that reduces the order of the MD beamformer from

N to N – 1 or a lower positive integer number, we attempt to

achieve a DF between the DF of the order N and that of the

order N – 1. We first approximate the ideal directivity pattern

and the SMA beamformer’s beampattern with spherical har-

monic series of order N, thereby building a relationship

between the desired, target directivity pattern and the beam-

former’s beampattern. We then define a new directivity pat-

tern, which is a linear combination of the ideal directivity

pattern of the MD beamformer of order N and that of the

MD beamformer of order N – 1. A flexible HD beamformer

is then deduced, which can improve the WNG while achiev-

ing a DF between the DF of an Nth-order MD beamformer

and that of an ðN � 1Þth-order MD one. There is one impor-

tant tuning parameter, whose value is real and in the range

between 0 and 1 and affects the performance of the flexible

HD beamformer. To determine the proper value of this

parameter, we derive the analytical link between the DF and

the tuning parameter as well as the analytical link between

the WNG and this parameter. Based on these links, we show

that the optimal value of the tuning parameter can be easily

computed once the value of the DF or the WNG is specified.

This is very useful for practical applications since we can

design beamformers with a certain level of the WNG and

optimize the DF without solving the optimization problem

numerically, or vice versa.

The remainder of this paper is organized as follows.

Section II presents the signal model, problem formulation,

and performance measures. We then discuss some funda-

mentals of spherical harmonics in Sec. III. Sections IV and

V presents, respectively, the derivation of the MD beam-

former and the flexible MD beamformer. Section VI dis-

cusses how to determine the value of the tuning parameter

once the value of the DF or the WNG is specified.

Simulation results are presented in Sec. VII to validate and

compare the performance of the MD and flexible MD beam-

formers. Finally, some conclusions are given in Sec. VIII.

II. SIGNAL MODEL, PROBLEM FORMULATION, AND
PERFORMANCE MEASURES

A. Signal model

Consider a spherical microphone array (SMA), of radius

r, consisting of M omnidirectional microphones. We assume

that the center of the SMA coincides with the origin of the

three-dimensional Cartesian coordinate system, azimuth

angles are measured anti-clockwise from the x axis, eleva-

tion angles are measured downward from the z axis. The mth

ðm ¼ 1; 2;…;MÞ microphone’s position is represented as

r � rm, where

rm ¼ sin hm cos /m sin hm sin /m cos hm

� �T
; (1)

superscript T denotes the transpose of a vector or a matrix,

hm and /m are the elevation and azimuth angles of the mth

microphone, respectively.

Suppose that we want to steer the beamformer in the

direction ðh;/Þ, where h 2 ½0; p�, and / 2 ½0; 2pÞ. In this

scenario, the steering vector corresponds to plane waves of a

source in the farfield of length M is defined as

dðx; h;/Þ ¼ ej-pT r1 ej-pT r2 � � � ej-pT rM

h iT
; (2)

where j is the imaginary unit with j2 ¼ �1; - ¼ xr=c; x
¼ 2pf is the angular frequency, f> 0 is the temporal fre-

quency, and p ¼ ½ sin h cos / sin h sin / cos h �T .

Now, let us assume that a source signal (plane wave),

located in the farfield, propagates in an anechoic acoustic

environment at the speed of sound, i.e., c ¼ 340 m/s, and

impinges on the SMA from the direction ðhs;/sÞ. Then, the

received signal in the frequency domain can be written as

xðxÞ ¼ X1ðxÞ X2ðxÞ � � � XMðxÞ
� �T

¼ dðx; hs;/sÞSðxÞ þ vðxÞ; (3)

where dðx; hs;/sÞ is the source propagation vector of length

M, SðxÞ is the (zero-mean) source signal of interest (also
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called the desired signal), and vðxÞ is the noise vector

defined in a similar way to xðxÞ. Note that in this work, we

assume that the steering angle (look direction) coincides

with the source incidence angle ðhs;/sÞ.

B. Problem formulation

Beamforming is a process of applying a complex weight

H�mðxÞ, where the asterisk denotes complex conjugation, to

the microphone signal, XmðxÞ, and then summing together

the weighted outputs to form an estimate of the desired

source signal (Benesty et al., 2008), i.e.,

ZðxÞ ¼
XM

m¼1

H�mðxÞXmðxÞ

¼ hHðxÞxðxÞ
¼ hHðxÞdðx; hs;/sÞSðxÞ þ hHðxÞvðxÞ; (4)

where ZðxÞ is the estimate of the desired source signal, the

superscript H is the conjugate-transpose operator, and

hðxÞ ¼ H1ðxÞ H2ðxÞ � � � HMðxÞ
� �T

(5)

is the beamforming filter of length M. The objective of

beamforming is then to find an optimal filter, hðxÞ, such that

ZðxÞ is a good estimate of SðxÞ. Usually, the distortionless

constraint in the look direction is needed in our context, i.e.,

hHðxÞdðx; hs;/sÞ ¼ 1: (6)

C. Performance measures

Generally, two kinds of metrics are used to evaluate a

beamformer, i.e., the beampattern (also called the directivity

pattern) and the gain in signal-to-noise-ratio (SNR).

The beampattern describes the sensitivity of the beam-

former to a plane wave impinging on the array from the

direction ðh;/Þ (see Fig. 1). Mathematically, the beampat-

tern with an SMA is defined as

B hðxÞ; h;/½ � ¼ hHðxÞdðx; h;/Þ ¼
XM

m¼1

H�mðxÞej-pT rm :

(7)

If we choose the first microphone as the reference, the input

SNR is defined according to the signal model given in Eq. (3) as

iSNR xð Þ ¼ /S xð Þ
/V1

xð Þ ; (8)

where /SðxÞ ¼ E½jSðxÞj2� and /V1
ðxÞ ¼ E½jV1ðxÞj2� are the

variances of SðxÞ and V1ðxÞ, respectively, with the operator

Eð�Þ denoting the mathematical expectation. The output

SNR, according to Eq. (4), is given as

oSNR h xð Þ½ � ¼ /S xð ÞjhH xð Þd x; hs;/sð Þj2

hH xð ÞUv xð Þh xð Þ

¼ /S xð Þ
/V1

xð Þ �
jhH xð Þd x; hs;/sð Þj2

hH xð ÞCv xð Þh xð Þ
; (9)

where UvðxÞ ¼ E½vðxÞvHðxÞ� and CvðxÞ ¼ UvðxÞ=/V1
ðxÞ

are the correlation and pseudo-coherence matrices of vðxÞ,
respectively.

The SNR gain is then derived as

G h xð Þ½ � ¼ oSNR h xð Þ½ �
iSNR xð Þ ¼

jhH xð Þd x; hs;/sð Þj2

hH xð ÞCv xð Þh xð Þ
: (10)

In the literature of microphone arrays, two types of noises

are often considered to evaluate a beamformer: white (both

temporally and spatially) and diffuse noises. The former

models the electronic and sensor noise as well as the mis-

match among different sensors in a microphone array sys-

tem, while the latter is often used to optimize the DF.

• The temporally and spatially white noise with the same

variance across all the microphones. In this case,

CvðxÞ ¼ IM, where IM is the M � M identity matrix, and

the gain given in Eq. (10) becomes

W h xð Þ½ � ¼ jh
H xð Þd x; hs;/sð Þj2

hH xð Þh xð Þ
; (11)

which is called the white noise gain (WNG) (Elko and

Meyer, 2008).
• The diffuse noise. In this case, the elements of CvðxÞ are

given by (Teal et al., 2002)

Cv xð Þ½ �ij ¼ Cd xð Þ½ �ij ¼ sinc
xdij

c

� �
; (12)

with i; j ¼ 1; 2;…;M, and dij being the distance between

microphones i and j. Now, the gain is

D h xð Þ½ � ¼ jh
H xð Þd x; hs;/sð Þj2

hH xð ÞCd xð Þh xð Þ
; (13)

which is called the directivity factor (DF) (Elko and

Meyer, 2008; Beranek, 1986).
FIG. 1. Illustration of a spherical microphone arrays, where ðh;/Þ is the

array look direction, ðhs;/sÞ is the source incidence angle.
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III. SPHERICAL HARMONICS

The spherical harmonics of order n ðn ¼ 0; 1; 2;
…;þ1Þ and degree l ðl ¼ 0;61;…;6nÞ are defined as

(Williams, 1999; Rafaely, 2015)

Yl
n h;/ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
n� lð Þ!
nþ lð Þ!

s
Pl

n cos hð Þejl/; (14)

where ð�Þ! represents the factorial function, and Pl
nðcos hÞ is

the associated Legendre function of order n and degree l.
The spherical harmonics satisfy the following orthogo-

nality (Williams, 1999; Rafaely, 2015):ð2p

0

ðp

0

Yl
nðh;/Þ Yl0

n0ðh;/Þ
� ��

sin hdhd/ ¼ dnn0dll0 ; (15)

where dnn0 and dll0 are the Kronecker delta functions.

Consequently, a proper sampling method should be chosen

such that when we approximate the integral with a sum of

samples, the orthogonality still holds approximately, i.e.,

XM

m¼1

amYl
nðhm;/mÞ Yl0

n0ðhm;/mÞ
� �� � dnn0dll0 ; (16)

where am are sampling weights (Rafaely, 2015). Several sam-

pling methods have been developed, such as the equal-angle

sampling, Gaussian sampling, uniform and nearly uniform

sampling, which have been fully summarized in the literature

(Rafaely, 2015). In this work, we consider the uniform and

nearly uniform sampling for simplicity, where the sampling

weights are chosen as a constant, i.e., am ¼ 4p=M.

Without loss of generality, we consider an open sphere.

The unit-amplitude plane wave, which comes from the direc-

tion ðh;/Þ, can be represented as a series of spherical har-

monics (Rafaely, 2015), i.e.,

ej-pT rm ¼
X1
n¼0

Xn

l¼�n

bnð-Þ Yl
nðhm;/mÞ

� ��
Yl

nðh;/Þ; (17)

where

bnð-Þ ¼ 4pjnJ nð-Þ; (18)

with J nð�Þ being the nth-order spherical Bessel function of

the first kind.

IV. MAXIMUM DIRECTIVITY BEAMFORMER

In beamforming, we expect the directivity pattern to be

as sharp as possible. Ideally, the beampattern is expected to

have a high spike at ðh;/Þ ¼ ðhs;/sÞ and zero elsewhere, i.e.,

Bðh;/Þ ¼ dðcos h� cos hsÞdð/� /sÞ: (19)

In this case, the DF may be infinitely large.

The ideal directivity pattern (19) can be represented in

terms of a spherical harmonic series as (Rafaely, 2015)

Bðh;/Þ ¼
X1
n¼0

Xn

l¼�n

Yl
nðhs;/sÞ

� ��
Yl

nðh;/Þ: (20)

Limiting the order in Eq. (20) up to N gives

B0Nðh;/Þ ¼
XN

n¼0

Xn

l¼�n

Yl
nðhs;/sÞ

� ��
Yl

nðh;/Þ: (21)

Using the spherical harmonic addition theorem (Rafaely,

2015), we can write Eq. (21) as

B0N h;/ð Þ ¼
XN

n¼0

2nþ 1

4p
Pn cos Hð Þ; (22)

where Pnðcos HÞ is the nth-order Legendre function, and H
is the angle difference between ðh;/Þ and ðhs;/sÞ, with

cos H ¼ cos hs cos hþ cos ð/s � /Þ sin hs sin h. When ðh;/Þ
¼ ðhs;/sÞ, i.e., H¼ 0, we have

jN ¼ B0N hs;/sð Þ ¼
XN

n¼0

2nþ 1

4p
Pn 1ð Þ ¼ N þ 1ð Þ2

4p
:

(23)

From Eq. (23), we define the normalized Nth-order ideal

directivity pattern as

BN h;/ð Þ ¼ 1

jN

XN

n¼0

Xn

l¼�n

Yl
n hs;/sð Þ

� ��
Yl

n h;/ð Þ: (24)

Figure 2 plots the ideal directivity pattern (as a function of

H) approximated by the spherical harmonics series of order

N¼ 3 and N¼ 10. It is clearly seen that the Nth-order ideal

directivity pattern have N distinct nulls and it corresponds to

the Nth-order hypercardioid (Elko and Meyer, 2008, Benesty

and Chen, 2012).

Now, substituting Eq. (17) into Eq. (7), we can rewrite

the beampattern as

B hðxÞ; h;/½ � ¼
XM

m¼1

H�mðxÞej-pT rm

¼
XM

m¼1

H�mðxÞ
X1
n¼0

Xn

l¼�n

bnð-Þ

� Yl
nðhm;/mÞ

� ��
Yl

nðh;/Þ

¼
X1
n¼0

Xn

l¼�n

Yl
nðh;/Þbnð-Þ

�
XM

m¼1

H�mðxÞ Yl
nðhm;/mÞ

� ��
: (25)

Limiting the expansion to the order N, we obtain an approxi-

mation of the beampattern,

BN hðxÞ; h;/½ � ¼
XN

n¼0

Xn

l¼�n

Yl
nðh;/Þbnð-Þ

�
XM

m¼1

H�mðxÞ Yl
nðhm;/mÞ

� ��
: (26)

Equating the beampattern in Eq. (26) to the Nth-order ideal

directivity pattern in Eq. (24), we find the following

relationship:

J. Acoust. Soc. Am. 143 (5), May 2018 Huang et al. 3027



bn -ð Þ
XM

m¼1

H�m xð Þ Yl
n hm;/mð Þ

� �� ¼ 1

jN
Yl

n hs;/sð Þ
� ��

(27)

or, equivalently,

b�n -ð Þ
XM

m¼1

Hm xð ÞYl
n hm;/mð Þ ¼ 1

jN
Yl

n hs;/sð Þ: (28)

We observe from Eq. (28) that the filter coefficients HmðxÞ
can be determined given the coefficients Yl

nðhs;/sÞ and

bnð-Þ, i.e.,

YhðxÞ ¼ gð-Þ; (29)

where

Y ¼

Y0
0ðh1;/1Þ Y0

0ðh2;/2Þ � � � Y0
0ðhM;/MÞ

Y�1
1 ðh1;/1Þ Y�1

1 ðh2;/2Þ � � � Y�1
1 ðhM;/MÞ

Y0
1ðh1;/1Þ Y0

1ðh2;/2Þ � � � Y0
1ðhM;/MÞ

Y1
1ðh1;/1Þ Y1

1ðh2;/2Þ � � � Y1
1ðhM;/MÞ

..

. ..
. . .

. ..
.

YN
N ðh1;/1Þ YN

N ðh2;/2Þ � � � YN
N ðhM;/MÞ

2
66666666666664

3
77777777777775

(30)

is a matrix of size ðN þ 1Þ2 �M, and

g -ð Þ ¼ 1

jN

Y0
0 hs;/sð Þ
b�0 -ð Þ

Y�1
1 hs;/sð Þ
b�1 -ð Þ

� � � YN
N hs;/sð Þ
b�N -ð Þ

" #T

(31)

is a vector of length ðN þ 1Þ2.

Generally, it is assumed that M � ðN þ 1Þ2. If

M > ðN þ 1Þ2, the solution to Eq. (29) is not unique. In this

case, the beamforming filter, hðxÞ, is derived from the fol-

lowing optimization:

minhðxÞh
HðxÞhðxÞ s: t: YhðxÞ ¼ gð-Þ: (32)

The solution of Eq. (32), which is the minimum-norm solu-

tion of Eq. (29), gives the Nth-order MD beamformer

hNðxÞ ¼ YHðYYHÞ�1
gð-Þ; (33)

where the subscript N is used to indicate the Nth order.

V. FLEXIBLE HIGH DIRECTIVITY BEAMFORMER

The MD beamformer may suffer from serious white

noise amplification, particularly at low frequencies. One

possible way to improve the WNG is by using more micro-

phones while fixing the order of the beamformer.

However, this would lead to many issues in terms of cost,

microphone mounting, array aperture, interelement spac-

ing, and possibly other performance degradation as deep

nulls. Now, we consider taking another approach, i.e.,

we improve the WNG by slightly sacrificing the value of

the DF.

To begin, we define the Nth-order flexible directivity

pattern as a tradeoff between the Nth-order and ðN � 1Þth-

order ideal directivity patterns,

BN;a h;/ð Þ ¼ a
j0N

XN

n¼0

Xn

l¼�n

Yl
n hs;/sð Þ

� ��
Yl

n h;/ð Þ

þ 1� a
j0N

XN�1

n¼0

Xn

l¼�n

Yl
n hs;/sð Þ

� ��
Yl

n h;/ð Þ;

(34)

where a is a real coefficient, with a 2 ½0; 1�, and

j0N ¼
1

4p
N2 þ a 2N þ 1ð Þ
� �

(35)

is a normalization factor.

To simplify the derivation, we rewrite Eq. (34) into an

equivalent form as

BN;a h;/ð Þ ¼ 1

j0N

XN

n¼0

Xn

l¼�n

nn Yl
n hs;/sð Þ

� ��
Yl

n h;/ð Þ; (36)

where

nn ¼
1; n ¼ 0; 1;…;N � 1;

a; n ¼ N:

(
(37)

Equating the beampattern in Eq. (26) to the Nth-order flexi-

ble directivity pattern, we obtain the following relationship:

b�n -ð Þ
XM

m¼1

Hm xð ÞYl
n hm;/mð Þ ¼ nn

j0N
Yl

n hs;/sð Þ: (38)

It follows immediately that

YhðxÞ ¼ g0ð-Þ; (39)

FIG. 2. (Color online) Ideal directivity pattern (as a function of H) approxi-

mated by the spherical harmonic series of order N¼ 3 and 10.
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where Y has been defined in Eq. (30) and

g0 -ð Þ¼ 1

j0N

n0Y0
0 hs;/sð Þ
b�0 -ð Þ

n1Y�1
1 hs;/sð Þ
b�1 -ð Þ

��� nNYN
N hs;/sð Þ

b�N -ð Þ

" #T

(40)

is a vector of length ðN þ 1Þ2.

The minimum-norm solution of Eq. (39) gives the Nth-

order flexible HD beamformer,

hN;aðxÞ ¼ YHðYYHÞ�1
g0ð-Þ: (41)

Depending on the value of a, we have the following three

cases.

• a¼ 1: hN;aðxÞ becomes the Nth-order MD beamformer,

i.e., hN;1ðxÞ ¼ hNðxÞ.
• a¼ 0: hN;aðxÞ becomes the MD beamformer of order N – 1,

i.e., hN;0ðxÞ ¼ hN�1ðxÞ.
• 0 < a < 1: we obtain a flexible HD beamformer whose

performance is between the performances of the MD

beamformers of order N and order N – 1.

VI. DETERMINATION OF THE TUNING PARAMETER IN
THE FLEXIBLE HD BEAMFORMER

The value of the tuning parameter, a, plays an impor-

tant role on the performance of the flexible HD beam-

former. In this section, we discuss the DF and the WNG of

the proposed beamformer and show how to determine the

value of a based on a specified value of the DF or the

WNG.

A. Determination of the tuning parameter with a
specified DF value

Following the definition of the DF, the frequency-

independent DF of the Nth-order flexible HD beamformer

can be defined as

DN;a ¼
jBN;a hs;/sð Þj2

1

4p

ð2p

0

ðp

0

jBN;a h;/ð Þj2 sin hdhd/

: (42)

From Eq. (36), we have

jBN;a h;/ð Þj2 ¼ 1

j02N

XN

n¼0

Xn

l¼�n

nn Yl
n hs;/sð Þ

� ��
Yl

n h;/ð Þ

�
XN

n0¼0

Xn0

l0¼�n0
nn0Y

l0
n0 hs;/sð Þ Yl0

n0 h;/ð Þ
� ��

:

(43)

Using Eq. (43) and also the orthogonality property of

spherical harmonics (Rafaely, 2015), we can write the

denominator of the right-hand side of Eq. (42) as

1

4p

ð2p

0

ðp

0

jBN;a h;/ð Þj2 sin hdhd/

¼ 1

4pj02N

XN

n¼0

Xn

l¼�n

n2
n Yl

n hs;/sð Þ
� ��

Yl
n hs;/sð Þ

¼ 1

4pj02N

XN

n¼0

n2
n

2nþ 1

4p

¼ N2 þ a2 2N þ 1ð Þ
� �

4pj0Nð Þ2
: (44)

Substituting Eqs. (37) and (44) into Eq. (42) and using the

fact that jBN;aðhs;/sÞj2 ¼ 1, we obtain an explicit form of

the DF,

DN;a ¼
N2 þ a 2N þ 1ð Þ
� �2
N2 þ a2 2N þ 1ð Þ : (45)

To clearly see the changing trend of DN;a, we compute the

gradient of DN;a with respect to a, i.e.,

@DN;a

@a
¼ N2 2N þ 1ð Þ N2 þ a 2N þ 1ð Þ

� �
1� að Þ

N2 þ a2 2N þ 1ð Þ½ �2
: (46)

Clearly, for 0 	 a 	 1, we always have

@DN;a

@a
� 0; (47)

where the equality holds if and only if a¼ 1. Consequently,

the DF of the Nth-order flexible HD beamformer is an

increasing function of a. From Eq. (45), it is seen that the DF

of the Nth-order flexible HD beamformer satisfies

N2 	 DN;a 	 ðN þ 1Þ2: (48)

From Eq. (45), one can compute the value of the tuning

parameter once the value of the DF is specified. As shown in

Appendix A, with a specified DF, D, the parameter a is

given as

a ¼
N2 2N þ 1ð Þ � N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1ð ÞD N þ 1ð Þ2 �D

h ir
2N þ 1ð Þ D � 2N � 1ð Þ :

(49)

Table I lists some examples of the tuning parameter for

different orders of the flexible HD beamformer.

B. Determination of the tuning parameter with a
specified WNG value

If we neglect the approximation error on the distortion-

less constraint in the look direction (we will come back to

this point in the simulation part), the WNG of the Nth-order

flexible HD beamformer is in the following form:

W hN;a xð Þ
� �

¼ 1

hN;a xð ÞhH
N;a xð Þ

: (50)
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With the uniform or nearly uniform sampling (Rafaely,

2015), we have

YYH ¼ M

4p
IM: (51)

Using Eqs. (40) and (51), we can write the denominator in

Eq. (50) as

hH
N;a xð ÞhN;a xð Þ ¼ 4p

M
g0H -ð Þg0 -ð Þ

¼ 4p
Mj02N

XN

n¼0

Xn

l¼�n

n2
n

jbn -ð Þj2
jYl

n hs;/sð Þj2

¼ 4p

Mj02N

XN

n¼0

n2
n

jbn -ð Þj2
2nþ 1

4p
:

(52)

Substituting Eqs. (18) and (52) into Eq. (50), we can rewrite

the WNG as

W hN;a xð Þ
� �

¼ Mj02NXN

n¼0

n2
n 2nþ 1ð Þ
jbn -ð Þj2

¼ 4pð Þ2Mj02NXN

n¼0

n2
n 2nþ 1ð Þ
J 2

n -ð Þ

; (53)

where J nðxÞ, again, is the nth-order spherical Bessel func-

tion. Finally, by substituting Eqs. (35) and (37) into Eq. (53),

we derive

W hN;a xð Þ
� �

¼ M N2þ 2Nþ 1ð Þa
� �2

XN�1

n¼0

2nþ 1ð Þ
J 2

n -ð Þ
þ 2Nþ 1ð Þ
J 2

N -ð Þ
a2

¼
M 2Nþ 1ð Þ2a2þ 2N2 2Nþ 1ð ÞaþN4

h i
2Nþ 1ð Þ
J 2

N -ð Þ
a2þ

XN�1

n¼0

2nþ 1ð Þ
J 2

n -ð Þ

:

(54)

From Eq. (54), it is seen that the WNG is frequency depen-

dent, which is different from the DF. When the value of -
approaches 0 (i.e., at low frequencies), the value of J nð-Þ
becomes very small and so is the value of the WNG, which

leads to serious white noise amplification. We also see that

the WNG is an increasing function of M, which indicates

that, for a specified order N, increasing the number of micro-

phones can improve the WNG.

Generally, for a small size array, the value of J Nð-Þ is

very small, and ð2N þ 1Þ=J 2
Nð-Þ is much larger than the

other coefficients. Consequently, the WNG is mainly

affected by ½ð2N þ 1Þ=J 2
Nð-Þ�a2 in the denominator of Eq.

(54), and it is a decreasing function of a.

From Eq. (54), it can be shown that the WNG of the

Nth-order flexible HD beamformer at a given frequency

satisfies

M N þ 1ð Þ4XN

n¼0

2nþ 1ð Þ
J 2

n -ð Þ

	 W hN;a xð Þ
� �

	 MN4

XN�1

n¼0

2nþ 1ð Þ
J 2

n -ð Þ

: (55)

According to Eq. (54), one can compute the value of the tun-

ing parameter once the level of the WNG is specified. As

shown in Appendix B, with a specified value of the WNG,

W, the parameter a can be computed as

a ¼ 2MN2 2N þ 1ð Þ þ
ffiffiffiffi
D
p

2W 2Nþ1ð Þ
J 2

N -ð Þ � 2M 2N þ 1ð Þ2
; (56)

where D is given in Eq. (B8) of Appendix B. This is very

useful for practical applications. Once we know the level of

the sensors’ self-noise and electronic noise of our system,

we can determine the minimum value of the WNG, which

can subsequently be used to compute the tuning parameter

and the DF without going through an experimental or numer-

ical optimization process.

VII. SIMULATIONS

In this section, we study the performance of the devel-

oped flexible HD beamformer through simulations. We con-

sider an open SMA with a radius of 3 cm, consisting of 32

omnidirectional microphones. While the designed beampat-

tern can be perfectly steered to any directions, we only con-

sider here the case where the signal of interest comes from

the direction ðhs;/sÞ ¼ ð90
; 115
Þ.
Figure 3 plots the beampatterns of the 1st-, 2nd-, 3rd-,

and 4th-order flexible HD beamformers for a 2 f1; 0:8;
0:5; 0:2; 0:1g. The designed beampatterns are symmetric

with respect to the look direction, so we only plot the two-

dimensional beampattern as a function of the azimuth angle

/. It is seen that the beampattern of the Nth-order flexible

HD beamformer changes with the value of a. As the value of

a decreases from 1 to 0, the designed beampattern achieves a

compromise between the beampattern of the Nth-order MD

beamformer and that of the ðN � 1Þth-order MD one.

Figure 4 plots the DF and the WNG of the MD beam-

former, both as a function of frequency, for three different

orders, i.e., N 2 f1; 2; 3; 4g. It is clearly seen from Fig. 4(a)

that the MD beamformer can achieve a DF of

10 log10ðN þ 1Þ2 dB over the studied frequency range. It is

also seen that the WNG is an increasing function of fre-

quency. The value of the WNG is very small at low frequen-

cies, particularly for higher orders, which leads to significant

white noise amplification.

TABLE I. Examples of computing the parameter a with a specified DF, D.

The special case of D ¼ 2N þ 1 is computed according to Eq. (A3), i.e., for

N¼ 1 and D ¼ 3; a ¼ 1=3, for N¼ 2 and D ¼ 5; a ¼ 0:1.

N Dmin Dmax a

1 1 4
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3D 4�Dð Þ

p
3 D� 3ð Þ , 1 	 D 	 4; D 6¼ 3

2 4 9
20� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5D 9�Dð Þ

p
5 D� 5ð Þ , 4 	 D 	 9; D 6¼ 5

3 9 16
63� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7D 16�Dð Þ

p
7 D� 7ð Þ , 9 	 D 	 16

4 16 25
48� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D 25�Dð Þ

p
3 D� 9ð Þ , 16 	 D 	 25
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As discussed previously, one way to improve the

WNG of the MD beamformer is by reducing the order. For

example, as shown in Fig. 4, the 3rd-order MD beam-

former can achieve a DF of approximately 12 dB.

However, the WNG at low frequencies is very small,

which makes it difficult to use in practice. To avoid serious

white noise amplification, one can use the same SMA to

design a 2nd-order MD beamformer. Now, the WNG is

significantly improved, but the corresponding DF drops

down to approximately 9 dB.

The flexible HD beamformer offers a convenient way to

control the tradeoff between a high DF and a reasonable

level of the WNG. Figure 5 plots the DF and the WNG of

the 3rd-order flexible HD beamformer as a function of fre-

quency for a 2 f0; 0:1; 0:2; 0:5; 1g. It is clearly seen that this

beamformer can achieve a good compromise between the

performance of the 3rd-order MD beamformer and that of

the 2nd-order MD beamformer.

The value of the tuning parameter, a, plays an important

role on the beamforming performance. Figure 6 plots the DF

of the flexible HD beamformer as a function of a for differ-

ent orders. It is seen that the DF increases with a. As the

value of a increases from 0 to 1, the DF of the Nth-order

flexible HD beamformer increases from 20 log10N dB to

20 log10ðN þ 1Þ dB. Figure 7 plots the WNG of the flexible

HD beamformer as a function of a for different orders at,

respectively, f¼ 500 and 1000 Hz. It is seen that the WNG

decreases with a. Clearly, we can choose a proper value of a
to achieve a good compromise between the WNG of the

Nth-order MD beamformer and that of the ðN � 1Þth-order

MD beamformer.

As discussed in Sec. VI, one can determine the value of

the tuning parameter analytically given the value of either

the DF or the WNG. Of course, we assumed that the distor-

tionless constraint holds in the analysis, i.e.,

jhH
NðxÞdðx; hs;/sÞj � 1. Figure 8 plots the value of

jhH
NðxÞdðx; hs;/sÞj as a function of frequency for N
2 f1; 2; 3; 4g with the uniform sampling. It is clearly seen

that the approximation error on the distortionless constraint

is negligible.

Figure 9 plots the computed tuning parameter a with a

given value of the DF, where for the Nth-order flexible HD

beamformer, the DF changes from 20 log10N dB to

20 log10ðN þ 1Þ dB. As shown in Eq. (A5), a has two

FIG. 3. (Color online) Beampatterns of

the first-, second-, third-, and fourth-

order flexible HD beamformers for dif-

ferent values of a.
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solutions. But a2 is the correct solution because its value is

in the range between 0 and 1 as clearly seen in Fig. 9 (pink

shadowed area). This result corroborates with the theoretical

analysis.

Similarly, Fig. 10 plots the computed tuning parameter

a with a given value of the WNG. The result confirms that a1

is the correct solution because its value is in the range

between 0 and 1 (shadowed area in Fig. 9). This, again, cor-

roborates the theoretical analysis.

VIII. CONCLUSIONS

In this paper, we studied the problem of frequency-

invariant beamforming to achieve maximum directivity

factor while maintaining a reasonable level of white noise

FIG. 4. (Color online) DF and WNG of the MD beamformer as a function

of the frequency, f, for four different orders: (a) DF and (b) WNG.

Conditions: M¼ 32 and r¼ 3 cm.

FIG. 5. (Color online) DF and WNG of the third-order flexible HD beam-

former as a function of the frequency, f, for different values of a: (a) DF and

(b) WNG. Conditions: M¼ 32 and r¼ 3 cm.

FIG. 6. (Color online) DF of the flexible HD beamformer as a function of a,

for different orders, N. Conditions: M¼ 32 and r¼ 3 cm.

FIG. 7. (Color online) WNG of the flexible HD beamformer as a function of

a for different orders, N: (a) f¼ 500 Hz and (b) f¼ 1000 Hz. Conditions:

M¼ 32 and r¼ 3 cm.
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gain with SMAs. We discussed the problem formulation of

beamforming and the ideal directivity pattern, i.e., a maxi-

mum response at the desired direction, and zero response

in all other directions. Then, by using the spherical

harmonics expansion, we obtained the relationship

between the ideal directivity pattern and the beamformer’s

beampattern. A flexible HD beamformer is subsequently

deduced by solving a linear system of equations, which

can achieve a good compromise between the performances

of the MD beamformers of order N and order N – 1. An

important parameter of the flexible HD beamformer is

the tuning coefficient, whose value plays an important

role on the beamformer’s performance. The proper

value of this parameter can be determined by experiments.

But we derived analytical links between this parameter and

the DF and the WNG. Based on these links, we showed

how to determine the optimal value of the tuning parame-

ter once the value of the DF or the WNG is specified.

Simulation results validated the theoretical analysis and

demonstrated the useful properties of the flexible HD

beamformer.
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APPENDIX A

In this appendix, we discuss how to determine the value

of the tuning parameter, a, given the value of the DF, i.e., D.

Given D, one can easily find the order, N, of the flexible HD

beamformer according to Eq. (48). We then have

D ¼ N2 þ a 2N þ 1ð Þ
� �2
N2 þ a2 2N þ 1ð Þ : (A1)

From Eq. (A1), we easily deduced that

ð2N þ 1ÞðD � 2N � 1Þa2 � 2N2ð2N þ 1Þa
þ N2ðD � N2Þ ¼ 0: (A2)

If D ¼ 2N þ 1, Eq. (A2) is a linear equation, and the solu-

tion is easily obtained as

a ¼ D� N2

2 2N þ 1ð Þ : (A3)

If D 6¼ 2N � 1, Eq. (A2) becomes a quadratic equation and

its discriminant is

D ¼ 4N2Dð2N þ 1Þ ðN þ 1Þ2 �D
h i

� 0; (A4)

where the equality holds if and only if D ¼ ðN þ 1Þ2. So, the

quadratic equation of Eq. (A2) has two solutions,

a1;2 ¼
2N2 2N þ 1ð Þ6

ffiffiffiffi
D
p

2 2N þ 1ð Þ D � 2N � 1ð Þ : (A5)

FIG. 8. (Color online) The value of jhH
NðxÞdðx; hs;/sÞj as a function of the

frequency, f, for different orders, N. Conditions: M¼ 32 and r¼ 3 cm.

FIG. 9. (Color online) Solutions of the tuning factor, a, as a function of the

desired DF for different orders, N.

FIG. 10. (Color online) Solutions of the tuning factor, a, as a function of the

desired WNG for different orders, N. Conditions: M¼ 32 and r¼ 3 cm.
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Now we have the following two cases.

• D < 2N þ 1 (this only happens for N¼ 1 and N¼ 2). In

this case, it can be verified that
ffiffiffiffi
D
p
� 2N2ð2N þ 1Þ. As a

result, we have a1 	 0 and a2 � 0, where the equality

holds if and only if D ¼ N2. Since the value of a should

be greater than 0, the correct solution must be a2.
• D > 2N þ 1. In this case, we have 0 < D� 2N � 1 	 N2,

so

2N2 2N þ 1ð Þ
2 2N þ 1ð Þ D � 2N � 1ð Þ ¼

N2

D� 2N � 1ð Þ � 1: (A6)

From Eq. (A6), it is seen that a1 > 1. Since the range of the

tuning parameter is ½0; 1�, it is safe to say that the correct

solution must be a2.

To summarize, the correct solution of Eq. (A3) is

a ¼ a2 ¼
2N2 2N þ 1ð Þ �

ffiffiffiffi
D
p

2 2N þ 1ð Þ D � 2N � 1ð Þ : (A7)

Substituting Eq. (A4) into Eq. (A7), we finally obtain the

correct solution of the tunable parameter, a, with a specified

value of the DF, D, i.e.,

a ¼
N2 2N þ 1ð Þ � N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1ð ÞD N þ 1ð Þ2 �D

h ir
2N þ 1ð Þ D � 2N � 1ð Þ :

(A8)

APPENDIX B

In this appendix, we discuss how to determine the value

of a with a given value of the WNG, i.e., W. Given W, one

can easily find the order, N, of the flexible HD beamformer

according to Eq. (55). Following a similar way as in

Appendix A, we have

W ¼ M N2 þ 2N þ 1ð Þa
� �2

2N þ 1ð Þ
J 2

N -ð Þ
a2 þ

XN�1

n¼0

2nþ 1ð Þ
J 2

n -ð Þ

: (B1)

From Eq. (B1), we easily get

Aa2 þ Baþ C ¼ 0; (B2)

where

A ¼ W 2N þ 1ð Þ
J 2

N -ð Þ
�M 2N þ 1ð Þ2;

B ¼ �2MN2 2N þ 1ð Þ;

C ¼ W
XN�1

n¼0

2nþ 1ð Þ
J 2

n -ð Þ
�MN4: (B3)

It can be verified from Eq. (55) that

W 2N þ 1ð Þ
J 2

N -ð Þ
� M N þ 1ð Þ4XN

n¼0

2nþ 1ð Þ
J 2

n -ð Þ

� 2N þ 1ð Þ
J 2

N -ð Þ

¼ M N þ 1ð Þ4 2N þ 1ð ÞXN

n¼0

2nþ 1ð Þ J
2
N -ð Þ
J 2

n -ð Þ

: (B4)

Generally, white noise amplification occurs at low frequen-

cies. So, we set our focal point of designing the flexible HD

beamformer with a specified value of the WNG to low fre-

quencies, i.e., the values of - are small. In this case, for

n 	 N, we have J 2
Nð-Þ 	 J 2

nð-Þ, i.e., ½J 2
Nð-Þ=J 2

nð-Þ� 	 1.

Then, it can be verified that

0 <
XN

n¼0

2nþ 1ð Þ J
2
N -ð Þ
J 2

n -ð Þ
<
XN

n¼0

2nþ 1ð Þ ¼ N þ 1ð Þ2:

(B5)

From Eqs. (B4) and (B5), we derive

A ¼ W 2N þ 1ð Þ
J 2

N -ð Þ
�M 2N þ 1ð Þ2

>
M N þ 1ð Þ4 2N þ 1ð Þ

N þ 1ð Þ2
�M 2N þ 1ð Þ2

¼ MN2 2N þ 1ð Þ > 0: (B6)

From Eq. (55), we have

C ¼ W
XN�1

n¼0

2nþ 1ð Þ
J 2

n -ð Þ
�MN4

	 MN4

XN�1

n¼0

2nþ 1ð Þ
J 2

n -ð Þ

XN�1

n¼0

2nþ 1ð Þ
J 2

n -ð Þ
�MN4 ¼ 0: (B7)

From Eqs. (B6) and (B7), it can be checked that AC 	 0.

The discriminant of the quadratic equation (B2) is

D ¼ B2 � 4AC � B2 ¼ 2M2N4ð2N þ 1Þ2 > 0: (B8)

Therefore, the quadratic Eq. (B2) have two distinct roots,

a1;2 ¼
�B6

ffiffiffiffi
D
p

2A : (B9)

Since A > 0; B < 0, and D � B2, it can be checked that

a1 ¼ �ðB þ
ffiffiffiffi
D
p
Þ=2A � 0, a2 ¼ �ðB �

ffiffiffiffi
D
p
Þ=2A 	 0. We

recall that the value of a is in the range of ½0; 1�.
Consequently, the correct solution for a is

a ¼ a1 ¼
2MN2 2N þ 1ð Þ þ

ffiffiffiffi
D
p

2W 2N þ 1ð Þ
J 2

N -ð Þ
� 2M 2N þ 1ð Þ2

: (B10)
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