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Abstract: This letter deals with the problem of differential beamforming
with microphone arrays of arbitrary planar geometry. By approximating
the beampattern with the Jacobi-Anger expansion, it develops an algorithm
that can form any specified frequency-invariant beampattern with a micro-
phone array of any planar geometry as long as the sensors’ coordinates are
given and the spacing between neighboring sensors is smaller than the
smallest wavelength. This method is rather general and it can be used to
design differential beamformers with linear, circular, and concentric circu-
lar differential microphone arrays as well as differential arrays of arbitrary
planar geometry where sensors are placed in any specified positions.
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1. Introduction

Differential microphone arrays (DMAs) have now been used in a wide range of applica-
tions to enhance broadband acoustic signals while suppressing noise, reverberation, and
interference (Bernardini et al., 2017; Byun et al, 2018; Elko, 2004; Sena et al., 2012).
Early efforts in this area were focused on linear arrays where differential beamformers
are designed in a multistage manner (Elko, 2004; Elko and Meyer, 2008). This method,
while elegant and simple, lacks flexibility in controlling white noise amplification, which
is a significant problem of DMAs at low frequencies. Recently, an approach was devel-
oped to design linear DMAs in the short-time Fourier transform domain with null
constraints from the desired beampattern (Benesty and Chen, 2012). It does not only offer
the flexibility to design different directivity patterns, but also provides a way to deal with
the white noise amplification problem, i.e., improving the white noise gain (WNG) (Elko
and Meyer, 2008) by increasing the number of microphones while fixing the DMA order.
This approach has been lately extended to the design of circular differential microphone
arrays (CDMAs) (Benesty et al., 2015; Huang et al., 2017b), and concentric circular dif-
ferential microphone arrays (CCDMAs) (Huang et al., 2017a). In comparison with linear
DMAs, CDMAs, and CCDMAs enjoy full flexibility in beam steering in a plane.

One can also design three-dimensional (3D) beamformers by using spherical
harmonic expansion, which would naturally encompass the two-dimensional (2D)
cylindrical expansion (Elko and Meyer, 2008). Generally, the sensor configurations are
limited to spherical geometries or circular ones (Yan et al, 2007). In Parra (2006), a
method was presented to design frequency-invariant beamformers based on the spheri-
cal harmonic decomposition of the beampattern. This method can be adapted to arrays
with arbitrary geometry, but then the resulting beampattern is no longer guaranteed to
be frequency invariant.

In this paper, we study the more general case of the design of fully steerable
2D DMAs (i.e., can be steered to any angle) with arbitrary planar array geometries
where the sensors can be placed in any position as long as their coordinates are accessi-
ble to the subsequent beamforming algorithm. This approach can be used to construct
any desired directivity pattern and it is rather flexible since the array geometry is no
longer restricted to linear and circular ones.

2. Signal model, problem formulation, and performance measures

Let us consider a sensor array consisting of M microphones, which are distributed in a
specified area on a plane. Assume that the center of the array coincides with the origin of
the 2D Cartesian coordinate system and the azimuthal angles are measured anti-clockwise
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from the x axis. Consider a source signal (plane wave), in the farfield, that propagates in
an anechoic acoustic environment at the speed of sound, i.e., ¢ =340 m/s, and impinges on
the described array. The direction of the source signal to the array is parameterized by the
azimuthal angle 0,. With this model, the steering vector of length M is written as
(Monzingo and Miller, 2004),

d(o, 0,) = leron/Aeos0) . giloru/e)eos ()] (1)

where the superscript T is the transpose operator, ; is the imaginary unit with j?
= —1, o =2nf is the angular frequency, and />0 is the temporal frequency, r,,
(m=1, 2,..., M) is the distance from the mth microphone to the origin point, and ,,
is the angular position of the mth array element. In the design of DMA:s, it is assumed
that the spacing between any two neighboring sensors is much smaller than the acous-
tic wavelength, so that the true acoustic pressure differentials can be approximated by
finite differences of the microphones’ outputs. In this paper, we consider small-size
microphone arrays and assume that this condition easily holds.

The objective of beamforming is to recover the source signal of interest that is
corrupted by spatial acoustic noise. For that, the signal received at each microphone is
multiplied by a complex weight, H}(w), m = 1,2, ..., M, where the superscript * stands
for complex conjugation. The weighted outputs are then summed together to form the
beamformer’s output. Stacking all the weights together in a vector of length M, we get

h(w) = [Hi(0) H(w) - Hy(o)]". @)

Then, the problem of beamforming is to find the optimal filter so that the beamform-
er’s output is a good estimate of the source signal of interest.

Generally, three metrics are used to evaluate the performance of a beam-
former, i.e., beampattern, WNG, and directivity factor (DF).

The beampattern describes the sensitivity of the beamformer to a plane wave
impinging on the array from the direction 0. Mathematically, it is defined as

M
Blh(w), 0] = " (0)d(w,0) = Y H, (o) /), 3)

m=1

where the superscript H is the conjugate-transpose operator. WNG evaluates the per-
formance of a beamformer with respect to the presence of array imperfection as well
as other uncertainties. It is defined as (Elko and Meyer, 2008),

_ W (@), 0)F
b7 ()h(w)

DF quantifies the ability of the beamformer in suppressing spatial noise from direc-
tions other than the look direction. It is written as (Elko and Meyer, 2008),

Wih(w)] 4)

W (@)d(w, 0)°
Dh()] = -7 e
h™ ()Lg(w)h(w)
where I'y(w) is the pseudo-coherence matrix of the noise signal in a spherically isotro-

pic noise field, and the (7, j)th element of I'y(w) is sinc(wd;;/c), with J; being the dis-
tance between microphones i and ;.

3. Desired beampattern

The main focus of this paper is on the design of DMA patterns. The frequency-
independent beampattern of an Nth-order DMA can be written as By (0) = Zi\/:oa]vﬁ
cos(nd) (Elko, 2004), where ay,, n=0, 1,..., N, are real coefficients determining the
shape of the directivity pattern. The coefficients of widely used directivity patterns such
as the dipole, the cardioid, the supercardioid, and the hypercardioid, are obtained
from different optimal criterion (Sena et al., 2012). For instance, the coefficients of the
hypercardioid pattern are obtained from the maximization of the DF and those of the
supercardioid pattern are obtained from the maximization of the front-to-back ratio
(Elko, 2004; Elko and Meyer, 2008). Given the ideal, target beampattern, the problem
of beamforming becomes one of finding the “optimal” beamforming filter, h(w), such
that the designed beampattern is as close as possible to the target beampattern. In
order to introduce the steering information and connect it to the Jacob-Anger expan-
sion (or circular harmonic expansion), we rewrite the desired frequency-independent
beampattern with main beam points in the direction 6 as
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N
B(boy, 0 — 05) = > by ne™ "% = [X(65)ban]"p, (0), (5)

n=—N

where
1(0,) = diag(e’™%, ..., 1,...,e7N%),

b, :[sz,—N o bayg o e b2N7N]T7

N
pe(e): I:e_]Ne 1 e]NH]T_

4. Design of differential beamformers with an arbitrary planar geometry

The optimal approximation of the exponential function that appears in beamformer’s
beampattern, Blh(w), 0], from a least-squares error perspective is the Jacobi-Anger
expansion (Abramowitz and Stegun, 1964; Huang et al., 2017b), i.e.,

N
o050 ) = 3 1y, <ﬂ> 0. ©)
C

n=—N

where J,(x) is the nth-order Bessel function of the first kind with J_,(x) = (—1)"J,(x).
Substituting Eq. (6) into Eq. (3), we obtain

N

Byh(w), 0] = Z el ()b (w), @)
n=—N
where
¥, (w) = { J (“’”) M g (“”2> e g (“” M) eznwr ®)
n n c n c n c 5

is a vector of length M.
Comparing Eq. (5) with Eq. (7), one can see the following relation:

¥(w)h(w) =T (0s)baw, ©)
where
(=) ¥y ()]

¥(w) = vy (o) ; (10)

)W) |
isa 2N+ 1) x M matrix.

Clearly, the design of a directivity pattern of order N requires at least 2N + 1
microphones. When M =2N + 1, the solution of Eq. (9) is h(w) =¥~ ()Y (0)bay,
which is known to suffer from white noise amplification, particularly at low frequen-
cies. One way to control white noise amplification is by increasing the number of
microphones so that M >2N + 1 and then the beamformer is derived by maximizing
the WNG. This can be written as the following optimization problem if there is no dis-
tortion in the look direction:

Il}%il)th(w)h(w) s.t. Y(w)h(w) = T (05)byy. an
The solution is
h(o) = P (o) [¥(0) P (0)] 7 (0)bay. (12)

This filter is also the minimum-norm solution of Eq. (9).

With Eq. (12), we can find the differential beamformer that forms the given
target beampattern B(byy, 0 — 05) with an arbitrary array geometry (the sensors need
to be spaced less than the smallest wavelength). It should be noticed that the developed
method can be viewed as a modal matching approach in cylindrical coordinates. The
matching accuracy depends on the geometry, but a detailed discussion of this is beyond
the scope of this paper.
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Fig. 1. (Color online) The array geometries, the beampatterns of the corresponding DS beamformer, the 2D
and 3D beampatterns of the corresponding differential beamformers designed according to Eq. (12): (a) Array-
I, (b) Array-II, and (c) Array-III.

In comparison with our recent works on linear DMAs (Benesty and Chen,
2012) and CDMAs (Benesty et al., 2015; Huang et al., 2017a,b), the major advantage
of the developed method is that the array geometry is no longer restricted to linear
and circular ones. The method can be used to design DMAs to form a desired directiv-
ity pattern with any planar array geometry.

5. Simulations

In this section, we study the performance of the presented method for the design of dif-
ferential beamformers. The desired (target) beampattern is the second-order hypercar-
dioid, whose coefficients b,y are obtained from the maximization of the DF (Elko and
Meyer, 2008; Benesty and Chen, 2012) and are given by b,y =[0.2 0.2 0.2 0.2 0.2]”. In
the simulation, we use eight microphones and consider the following three different
array geometries. (1) Array-I: the coordinates of the microphones are random numbers
generated with the uniform distribution with the constraints of 1<r,<2cm and
—n <Y, <m. (2) Array-II: a uniform rectangular microphone array of size 2cm x 2 cm,
where the microphones are evenly distributed on four sides. (3) Array-III: a uniform
circular microphone array, with a radius of 1.5cm. Without loss of generality, we
assume that the desired look direction is 0°, i.e., 6,=0°.

Figure 1 plots the three different geometries, the beampatterns designed with
the conventional delay-and-sum (DS) beamformer for comparison, and the correspond-
ing beampatterns designed with the algorithm in Eq. (12). As seen, the DS beamformer
has frequency-dependent beampatterns and its directivity is low. The presented method
successfully formed the second-order hypercardioid for all three geometries and the
designed beampatterns are almost frequency invariant. It is also seen that the beam-
former’s directivity decreases along the elevation directions off the horizontal plane.

Figure 2 plots the DFs and WNGs of the designed differential beamformers
with the aforementioned three array geometries. It is clearly seen that the DF does not

12 20 12
(a) (b) (c)
10 s mimed] 10
8 a2 ¢ —
@ E = (Y] e
i == e e R a1
~ 6 » 20 ~ 6
= =z <]
a a4t |me—— Array-1 | | & | ¢/ === Array-I a 4t | Array-1
Array-IT g -40 Array-1T Array-IT
2 — — —Array-III - — = Array-III 2 — = —Array-III
0 -60 0
0 1 2 3 4 0 1 2 3 4 -180 -90 0 90 180
f (kHz) [ (kHz) 05 (°)

Fig. 2. (Color online) DF and WNG of the differential beamformer designed with the algorithm in Eq. (12)
with three different array geometries: (a) DF as a function of the frequency, (b) WNG as a function of the fre-
quency, and (c) DF as a function of the look direction 6.
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change much with frequency for all three geometries, which corroborates that the
designed beampatterns are (almost) frequency invariant.

Figure 2(c) plots the DFs for different look directions, 0;. It is clearly seen
that the designed differential beamformers are continuously steerable. However, note
that if all microphones are distributed on a line, full electronic steering is not possible.

6. Conclusions

In this paper, we investigated the problem of differential beamforming with DMAs of
arbitrary planar geometries. By approximating the beampattern with the Jacobi-Anger
expansion, we developed a beamforming design method, which can approach a speci-
fied target frequency-invariant beampattern with an array of any planar geometry as
long as the sensors’ coordinates are given and the spacing between neighboring sensors
is smaller than the smallest wavelength. Simulation results validated the feasibility and
effectiveness of the developed differential beamforming algorithm.
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