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Time-Delay Estimation via Linear Interpolation
and Cross Correlation

Jacob Benesty, Senior Member, IEEE, Jingdong Chen, Member, IEEE, and Yiteng Huang, Member, IEEE

Abstract—Time-delay estimation (TDE), which aims at mea-
suring the relative time difference of arrival (TDOA) between
different channels is a fundamental approach for identifying,
localizing, and tracking radiating sources. Recently, there has
been a growing interest in the use of TDE based locator for
applications such as automatic camera steering in a room confer-
encing environment where microphone sensors receive not only
the direct-path signal, but also attenuated and delayed replicas of
the source signal due to reflections from boundaries and objects
in the room. This multipath propagation effect introduces echoes
and spectral distortions into the observation signal, termed as
reverberation, which severely deteriorates a TDE algorithm in
its performance. This paper deals with the TDE problem with
emphasis on combating reverberation using multiple microphone
sensors. The multichannel cross correlation coefficient (MCCC)
is rederived here, in a new way, to connect it to the well-known
linear interpolation technique. Some interesting properties and
bounds of the MCCC are discussed and a recursive algorithm
is introduced so that the MCCC can be estimated and updated
efficiently when new data snapshots are available. We then apply
the MCCC to the TDE problem. The resulting new algorithm
can be treated as a natural generalization of the generalized
cross correlation (GCC) TDE method to the multichannel case.
It is shown that this new algorithm can take advantage of the
redundancy provided by multiple microphone sensors to improve
TDE against both reverberation and noise. Experiments confirm
that the relative time-delay estimation accuracy increases with the
number of sensors.

Index Terms—Cross correlation, cross-correlation coefficient,
linear interpolation, multichannel, time-delay estimation (TDE).

1. INTRODUCTION

IME-DELAY estimation (TDE), which aims at measuring

the relative time difference of arrival (TDOA) among
spatially separated sensors, has played an important role in
radar, sonar, and seismology for localizing radiating sources.
Traditional methods for TDE are based on a “measure” of the
cross-correlation from measurements made with an array of
sensors. Nowadays, we use the same kind of techniques to
localize and track acoustic sources in a room environment for
applications such as automatic camera tracking for video-con-
ferencing [1]-[3] and microphone array beam steering [4]-[9]
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for suppressing noise and reverberation in various communica-
tion and voice processing systems.

The generalized cross-correlation (GCC) method, proposed
by Knapp and Carter in 1976 [10], is the most popular technique
for TDE. The delay estimate between two sensors is obtained
as the time-lag that maximizes the cross-correlation between
filtered versions of the received signals. This method is well
studied and it performs fairly well in moderately noisy and
nonreverberant environments [11], [12]. However, this method
tends to break down when applied to a microphone array system
in a room environment where TDE becomes more complicated
owing to the sophisticated reverberation effect. Many new ideas
have been recently proposed to better deal with noise and re-
verberation by taking advantage of the nature of a speech signal
[13], [14], by utilizing redundant information from multiple
sensor pairs [15], or from the blind channel identification point
of view [16], [17]. However, reverberation remains a problem
and in a highly reverberant room, all known methods fail. One
important problem we try to tackle in this paper is how the GCC
method can be generalized to the multichannel case (more than
two processes). The objective of this generalization is to take
advantage of the redundancy available from multiple sensors to
make the estimator more robust to noise and reverberation.

The definition of the cross-correlation coefficient is very well-
known and widely used in signal processing. In this paper, we
redefine the multichannel cross-correlation coefficient (MCCC)
in a way that connects it to the well-known linear interpola-
tion technique. Some interesting properties and bounds of the
MCCC will be discussed. A recursive algorithm is introduced so
that the MCCC can be estimated and updated efficiently when
new data snapshots are available. We will show in detail how the
MCCC can be used for TDE and many simulations will confirm
that the relative delay estimation accuracy increases with the
number of sensors.

II. LINEAR INTERPOLATION
We assume that we have L signals
xo(n),z1(n),...,zr—1(n), and we seek to deter-
mine how any one of these signals can be interpolated from the
others. To interpolate x;(n) from the rest, we need to minimize
the criterion [18], [19]
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with the constraint

cF(n)yu; = ¢y = —1 )

K2

where A(0 < A < 1) is a forgetting factor

T

ci(n) = [cio(n) cir(n) ... ci—1)(n)]

is a vector used to compute the interpolation error, (this vector
without the component ¢;; is the ith (0 < ¢ < L—1) interpolator
of the vector signal)

x(n) =[zo(n) w1(n)
w=[0 ... 010

is a vector of length L where its ith component is equal to one
and all others are zero, and

R(n) =Y A"7x(p)x" (p) 3)
p=0

is an estimate of the signal covariance matrix. Matrix R(n) is
positive semi-definite; but in the rest, we suppose that it is pos-
itive definite so it is invertible.

By using a Lagrange multiplier, it is easy to see that the solu-
tion to this optimization problem is

R(n)cl(n) = —Ei (’I’L)lli (4)

where

Bin) = el (RMei(n) = rppess )
is the interpolation error energy.
Since
ci(n) ~1
— =R i 6
By — 1 ©

then the ith column of R=%(n) is —c;(n)/E;i(n). We deduce
that R=1(n) can be factorized as follows:

1 —c10(n) - —cz—1)0(n)
—co1(n) 1 . —c¢p_n1(n)
R~ (n)= ==
_CO(L—I)(n) _CI(L—I)(n) 1
1
Eo(’n) ?
>< 0 El.(n)
1
0 0 =
A

= CT(n)DEI(n). (7N

Since R™!(n) is a symmetric matrix, (7) becomes

1
e 0 )
0 - 0
R~ (n) = Fi)
0 0 7EL,11(n)
1 —co1(n) . —co(z-1)(n)
—c10(n) 1 . —c(p—1)1(n)
X
—C(L_l)o(’n> —C(L_l)l(’n) N 1
=D (n)C(n). ®)

The first and last columns of R~!(n) contain respectively
the normalized forward and backward predictors and all the
columns between contain the normalized interpolators. C(n) is
simply the matrix of the interpolators and D g(n) is a diagonal
matrix containing all the respective interpolation error energies.

We define, respectively, the a priori and a posteriori interpo-
lation error signals as

= (n—1)x(n) ©
—cf (n)x(n). (10)

ei(n)

gi(n)

el

Using expression (8), we now define the a priori and a pos-
teriori Kalman gain vectors

K (n) 2R (n—1)x(n)

B €o e1(n) er_1(n) 17

_|:E0(TL—1) El(n—l) EL_l(TL—l):| (11)
k(n) 2R (n)x(n) ]

[ o e1(n) er—1(n)

Lats B B “2)

The ith component of the a priori (resp. a posteriori) Kalman
gain vector is the ith a priori (resp. a posteriori) interpolation
error signal normalized with the sth interpolation error energy
at time n — 1 (resp. n). From (3), we can derive the following
recursion:

AR(n — 1) = R(n) — x(n)x" (n). (13)

Using this recursion, it can be shown that the a posteriori
Kalman gain vector is related to k’(n) by [20]

k(n) = A"to(n)k (n) (14)
where
() = 4
P =N T XT () R-1(n — 1)x(n)
=1-xT(n)R(n)x(n) (15)
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Writing (4) at time n and n — 1, we obtain

CRwein) _

El(n)

AR(n —1)c;(n — 1)

. 1
)\Ei (TL - 1) ( 6)
Replacing in (16), AR.(n — 1) by the right-hand side of (13), we
get

¢i(n) =Yg 1) i(n — D +k(mjei(n)]

a7

Now, if we premultiply both sides of (17) by ul and utilize (2)
and (12), we find that

E;(n) = AE;(n—1) + ¢e;(n)e;(n). (18)
This means that the interpolation error energy can be computed
recursively. This relation is well-known for the forward (i = 0)
and backward (¢ = L) predictors [20]. It is used to obtain fast

versions of the recursive least-squares (RLS) algorithm.
Also, the interpolator vectors can be computed recursively

1

= T e @ 7D kM)

ci(n) (19)

If we premultiply both sides of (19) by —x7(n), we obtain a
relation between the a priori and a posteriori interpolation error
signals

- : (20)

III. MULTICHANNEL CROSS-CORRELATION COEFFICIENT

The definition of multiple coherence function, derived from
the concepts of the ordinary coherence function between two
signals and the partial (conditioned) coherence function, was
presented in [21] to measure the correlation between the output
of a MISO (multiple-input/single-output) system and its inputs.
In this section, we derive the multichannel cross-correlation co-
efficient (MCCC) in a new way such that it is related to the mul-
tichannel correlation matrix. We show that with our definition,
the MCCC can be treated as a generalization of the classical
cross-correlation coefficient to the case where we have more
than two processes. We will factorize R(n) and R~!(n) and
deduce some interesting properties related to cross-correlation
and linear interpolation. The covariance matrix can be factor-
ized as follows:

R(n) = DI (n)R(n)DZ (n) @1)
where
ro(n) 0 0
Dim=| ru(n) " 22)
0 U N oy )

1 p1o(m) - p(r-1)0(n)
~ p1o(n) 1 . p-11(n)
R(n)= . . ) (23)
pL-1o(n) par-i(n) ... 1
rij(n)=y_ X" Pai(p)z;(p), i.j=0.1,....L—1 (24)
p=0
and
pij(n) = rij(n) i,j=0,1,....,L—1. (25

rii(n)rij(n)’

pij(n) is the cross-correlation coefficient between z;(n) and
zj(n). N

Since matrix R(n) is symmetric, positive definite, and its di-
agonal elements are all equal to one, it can be shown that (see
Appendix)

0 < det [ﬁ(n)} <1 (26)
where “det” stands for determinant.

We can now generalize the definition of squared
cross-correlation coefficient to the multichannel -case.
We define the squared MCCC among the L signals
zo(n),z1(n),...,zr-1(n), as

~ det [R
p2(n) 21— det [R(n)} —1- M 27)
[L.5 u(n)

This definition is identical to the one given in [22], [23] using
the Gram determinant. For two (L = 2) processes zo(n) and
z1(n), we have

7”31 (n)

p2(n) = TOO(n)Tll (’I’L)

(28)

which is the classical definition of the squared cross-correlation
coefficient.
We have the following properties [23].
* 0 < p%(n) < 1(thecase p% (n) = 1 happens when matrix
R(n) is nonnegative definite).
o If two or more signals are perfectly correlated, then
pi(n) = 1.
« If all the processes are completely uncorrelated with each
other, then p% (n) = 0.
* If one of the signals is completely uncorrelated with the
L — 1 other signals, then the MCCC will measure the
correlation among those L — 1 remaining signals.
The inverse covariance matrix can be factorized as follows:

~ 1

R~ (n) = Dp* (n)C(n)D* (n) (29)

[See (30) at bottom of next page]. Clearly, C(n) is symmetric
and

Ej

E;
Z.cii(n) =

E—jCji(n), 1,7=0,1,...,L—1. (31)
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Since matrix C(n) is symmetric, positive definite, and its di-
agonal elements are all equal to one, we also have

0 < det [é(n)} <1. (32)
From (21) and (29), we find
L1
= sl - 11 Bi(n)
det [R(n)] det [C(n)] =115 (33)
We then get interesting bounds
L1
Bin) et [ﬁ(n) <1 (34)
=g Tu(n)
L-1
Eu(m) ot [é(n)} <1 (35)
= ru(n)
Hence
L-1
E
0<pi(n)<1— i) . (36)
= ru(n)
Moreover, (5) can be rewritten the following way:
1
Ei(n) =—=————
() ul’R-1(n)u,
- Tii (TL)
ul/R-1(n)u,
det [ﬁ(n)}
(37

=) det [f{,z(n)}

whereNf{,i(n) is a matrix of size (L — 1) x (L — 1) obtained
from R(n) by removing its ith row and 7th column. As a result,
we have

2 Ei(n) B
pr(n)=1- i) det [R,Z(n)}
3

and the bound in (36) becomes

Now if we define p7,; as

p; =1 = det [Riyi(n)] (40)

where j > i, and R;,j(n) is a (j — i) X (j — i) matrix whose
elements are taken as a block from the (i,%)-position to the
(4, 7)-position from the matrix R(n). We then have

pip—1(n) =p(n)

_ . _ Eo(n) =
=1 roo() det [R_g(n)}
Eo(n) 2
Too(n)[ pl.p—1(n)] 41)
where
P2 () =1— det [ﬁ_g(n)} 42)
is the squared MCCC among the L — 1 signals

z1(n),xa(n),...,xr—1(n). The interesting thing about
(41) is that it gives a relation on the order of the MCCC, with
P2 _1.1_1(n) = 0. Expression (42) can also be rewritten as

Ei1.-1(n)

) det [ﬁ,g:l(n)}

Prip-1(n) =1- (43)
where E1 1..,—1(n) is the forward prediction error energy (of
order L — 2) using the signals z1(n), z2(n),...,zr_1(n) and
R _¢:1(n) is a matrix of size (L — 2) x (L — 2) obtained from
R(n) by removing its first two rows and columns. Replacing
(43) in (41), we obtain

_ Eo(n)Er1:0-1(n)
roo(n)ri1(n)

pr-1(n) =1 det [Rooa1(n)]  (44)

and continuing the same process, we finally have

L-1

p%:L—l(n) =1- H

1=0

Ej.n-1(n) (45)
T (n)
where Ej;.;,_1(n) is the forward prediction error energy (of
order L — 1 — [) using the signals z;(n), z;+1(n), ..., z5_1(n)
and Eg o.1,—1(n) = Ey(n). This shows how the MCCC is re-
lated to the different orders of the forward linear prediction ener-
gies. The same principle can be shown with the different orders
of the backward linear prediction energies

Ei(n) _ o T Bi(n) j
0<1— <p(n)<1- <1, Vielo, L-1]. mTE
ii(n) LL 7y (n) 2 =pi(n)=1- Lot-tr-1-to(n)
1= 'U (39) pL-10(n) = pr(n) =1 E) ru(n) o
1 _ /%;cm(n) —\/%CO(L—I)(H)
Emy= | ~VECM 1 = TR acny () (30)

_1/_Efl_1 C(L_l)l(’n> 1
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2.9 " 9.0

x;_y(n) x;_,(n) x,(n) xo(n)

Fig. 1. Linear microphone array.

where Ef,_1_; 1,—1-1.0(n) is the backward prediction error en-

ergy (of order L—1—10)and Er_1 1,_1.0(n) = Er_1(n). Obvi-

ously, we can generalize this approach to any linear interpolator.
For two (L = 2) processes zo(n) and x1(n), we have

_ () _
=1- =1

_ Ei(n)

T11 (n)

781 (n)
T00 (n)ru (n)

p3(n) = (47)

IV. APPLICATION TO TIME-DELAY ESTIMATION

A. Signal Model

Suppose that we have a linear array as shown in Fig. 1, which
consists of L microphones whose outputs are denoted as z;(n),
[ =0,1,...,L — 1. Without loss of generality, we select mi-
crophone 0 as the reference point and consider the following
propagation model:

$0<n) o) 0 0 . 0
1(n) 0 a; 0 ... 0
z2(n) =10 0 a ° :
: P 0
zr-1(n) 0 0 ... 0 ar,
s(n—1t) wo(n)
s(n—t—7) wy(n)
x | sln—t=fam)] | £ | wan) (48)
s[n—t— fr—1(7)] wr—1(n)
where o, [ = 0,1,2,..., L — 1, are the attenuation factors due

to propagation effects, ¢ is the propagation time from the un-
known source s(n) to microphone 0, w;(n) is an additive noise
signal at the [th microphone, 7 is the relative delay between mi-
crophones 0 and 1, and f;(7) is the relative delay between mi-
crophones 0 and [. The function f; depends on 7 but also on
the microphone array geometry. It can be specified for arbitrary
arrays in one, two, or three dimensions. In this paper we are con-
sidering only linear arrays. In the far-field case (i.e., plane wave
propagation), if the array is equispaced, we have

filr) =17 (49)

and if it is not equispaced, we have

-1
Zi:o di,r

filt) = 7 (50)

where d; is the distance between microphones ¢ and i + 1,
1 = 0,1,2,...,L — 2. In the near-field case, f; depends also
on the position of the source. Again in this paper, we focus only
on the far-field case. In such a situation, 7 is not known, but the
geometry of the antenna is known such that the exact mathemat-
ical relation of the relative delay between microphones O and [
is well defined and given. It is further assumed that w;(n) is a
zero-mean Gaussian random process that is uncorrelated with
s(n) and the noise signals at other microphones. It is also as-
sumed that s(n) is reasonably broad-band.

B. Two-Channel Case

Consider the two signals z:9(n) and z1(n + m) where m is
an integer. The value of m that gives the maximum

2
2 _ 751(n,m)
p2(n7m) - TOO(”)Tll(nam) (51)
where

ro1(n,m) = Z A" Pro(p)zi(p + m) (52)

p=0
ri(n,m) =3 X"Pai(p+m) (53)

p=0

corresponds to the time-delay between microphones 0 and 1.
Mathematically, the solution to our problem is then given by

7 = arg maxy,p3(n, m) (54)
where 7 is an estimate of 7, m € [—Tmax, Tmax)» aNd Tmax 18
the maximum possible delay. When the cross-correlation coef-
ficient is close to 1, this means that the two signals that we com-
pare are highly correlated which happens when the signals are

in-phase, i.e. m ~ 7. This approach is similar to the generalized
cross-correlation method proposed by Knapp and Carter [10].

C. Multichannel Case

We are interested in estimating only one time-delay (7) from
multiple sensors. Obviously, two sensors are enough to estimate
7. However, the redundant information that is available when
more than two sensors are used, will help to improve the esti-
mator, especially in the presence of high level of noise and re-
verberation.

Consider the following vector:

x(n,m)=[wo(n) @r[n+fi(m)] ... zr_alntfroa(m)]]”

We can check that for m = 7, all the signals z;[n + fi(7)], 1 =
0,1,...,L—1,arealigned. This observation is essential because
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it already gives an idea on how to estimate 7. An estimate of the
covariance matrix corresponding to the signal x(n,m) is

n

R(n,m) = Z )\"ﬂ’x(p,m)xT(p?m)

p=0

=AR(n — 1,m) + x(n,m)xT (n,m). (55)
Therefore, the squared MCCC is
det [R(n,m
pi(n,m)=1- # (56)
I ru(n,m)
where
ra(n,m) = SN [p o+ fum)], 1=0,1,...,L—1,
p=0
(57)

The value of m that gives the maximum of p% (n,m), for dif-
ferent m, corresponds to the time-delay between microphones
0 and 1. Hence, the solution to our problem is
7 = arg max p3(n,m) (58)
where again m € [—Tmax, Tmax)> and Tmax 18 the maximum
possible delay. This approach can be seen as a cross-correla-
tion method, but we take advantage of the knowledge of the mi-
crophone array to estimate only one time-delay with more than
two sensors (instead of estimating multiple time-delays inde-
pendently) in an optimal way in a least-squares sense.

D. Recursive Estimation of the Squared MCCC

From Sections II and III, we can see that there are many dif-
ferent ways to estimate the squared MCCC. Here we propose
to estimate the elements of p2 (n, m) recursively. The recursive
estimation of ry;(n,m) is straightforward. Indeed, we have

T”(’I’L,m):/\T”(TL—l,m)-l-le [n+fi(m)], 1=0,1,...,L—1
(59
it is then easy to compute HlL:_Ol riu(n,m).
From (55), we have

I
=1+ %X(n,m)xT(”»m)R_l(” —1,m). (60)

One can notice that the right-hand side of (60) is of the form
I+yzT. So it has one eigenvalue equal to 1 +y7 'z, and the rest
all equal to unity. The determinant, which is the product of all
the eigenvalues is therefore equal to 1 + y7'z. We then have

1 -

Vv det [R(n,m)R *(n — 1,m)]
1

=det |[I+ Xx(n,m)xT(mm)R_l(n —1,m)

=1+ %xT(n,m)Rfl(n —1,m)x(n,m)

1
= olmm) ©b

ASource 2

Source B
|

92(<0)|
0,(>0)

-2 0

x4 (n) X, _,(n) x,(n) Xo(n)

Fig. 2. Linear microphone array in a multiple-source situation.

and finally we get

)\L

det [R(n,m)] = o)

det [R(n —1,m)]. (62)
The inverse of matrix R(n, m) that appears in ¢(n, m) can also

be calculated recursively

R 1(n,m)=A"R1(n—1,m)
—A_Zw(n,m)k'(n,m)k'T(n,m) (63)

where

K (n,m)=R"Y(n —1,m)x(n,m). (64)

V. TIME-DELAY ESTIMATION OF MULTIPLE SOURCES

time-delay estimation of multiple sources using microphone
arrays is a difficult problem. Consider a generic scenario where
there are M sources si(n),sa2(n),...,sp(n), and M < L
(This means that we have at least as many microphones as
sources). We assume that the M sources are mutually uncor-
related. This assumption holds in general. In a real system,
time-delay estimation is achieved on a frame-by-frame basis.
There may exist some correlation among signals if the frame
size is not large enough. However, such effect is neglected here.

One way to estimate the delays of the M sources is to com-
pute pZ(n,m), and then search for M largest peaks between
maximum negative and maximum positive possible delays, each
one corresponding to the time delay of one of the M sources.
However, in the search of multiple peaks, errors can be made
to discern a fake peak as a real one. If one has some a priori
knowledge of the minimum angular separation among the M
sources, the searching task can be easier. As a special example,
we consider a case for two sources, i.e., M = 2. Generalization
to more than two uncorrelated sources is rather straightforward.
For the angular separation constraint, we assume that we know
that s;(n) impinges on the array with a positive bearing and
$2(n) impinges on the array with a negative bearing as shown
in Fig. 2. For the source s1[n], we select microphone 0 as the
reference point, and for sa[n], we choose microphone L — 1 as
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the reference. Using the same propagation model as previously,
the microphone array vector signal is

x(n) = Dusi(n) + Dgsa(n) + w(n) (65)
where
x(n)=[zo(n) z1(n) wpa(n)]”
D, =diag(ap, a1, ...,a5_1)

Dﬁ :dlag(ﬂo [))17 B
si(n)=[s1(n — t1) s1[n —t1 = fa(71)]
sifn—t1— foa(m)]]”
s2(n)=[s2[n —t2 — gr—1(72)] 52 [n —ta — ga(72)]
32(n—t2 —Tg) Sg(n—tg)]T7
w(n)=[wo(n) wi(n) wr—1(n)]"
«a; [resp. ;] are the attenuation factors of source s;(n) [resp.
s2(n)] due to propagation effects, ¢; [resp. t2] is the propaga-
tion time from the unknown source s1(n) [resp. s2(n)] to mi-
crophone 0 [resp. . — 1], 71 [resp. =] is the relative delay be-
tween microphones O and 1 [resp. L—2 and L—1], f;(71) [resp.
gr—1—1(72)] is the relative delay between microphones 0 and [
[resp. L—1and L —1—1], and w;(n) is an additive noise signal

at the /th microphone.
Consider the following vectors:

x1 [0+ fi(my)]
wr—1[n+ fri(my))]”
Xa(n,ma) = [z [0+ gr—1(m2)] 1[0+ gr_a(m2)]

. 7/8L—1)

sl(n—tl —Tl)

x1(n,my) = [zo(n)

T
zr-1(n)]
where m1 and mo are two positive integers. We can check that
for my = 7y [resp. mo = 7] all the signals z;[n + fi(71)], | =
0,1,...,L—1[resp. z4[n+ gr—1-1(72)], 1 =0,1,..., L —1],
are aligned with respect to s1(n) [resp. s2(n)]. Estimates of the
covariance matrices corresponding to the signals x; (n, m1 ) and
xa(n, ma) are

Ri(n,m1)=AR;(n—1,my)+x1(n,m1)x] (n,my) (66)

Ro(n,ma) =ARo(n—1,my)+Xz(n, ma)xa (n,ms).  (67)
We see now that the solution to our problem is

71 = arg n#lin det [R1(n,mq)] (68)

Ty = arg n%i;n det [Ra(n, m2)] (69)

where 77 and 7y are, respectively, estimates of 71 and 7. With
our assumptions and since Rq(n,m1) and Ro(n, ms) are pos-
itive definitive, each one of the two functions det[Rq(n,mq)]
and det[Ry(n, m2)] has a unique minimum corresponding to
the solutions 71 and 7. In practice, the more microphone we
have, the more obvious the solutions are. Therefore, in prin-
ciple, we can easily estimate relative delays from two indepen-
dent sources at the same time by applying a constraint on the
angular separation.

VI. EXPERIMENTS

A. Experimental Setup

The measurements used in this paper were made in the Vare-
choic chamber at Bell Laboratories [24]. A diagram of the floor
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Fig. 3. Layout of the microphone array and source positions in the Varechoic
chamber (coordinate values measured in meters); six microphones are placed
at (2.437, 5.600, 1.400), (2.537, 5.600, 1.400), (2.637, 5.600, 1.400), (2.737,
5.600, 1.400), (2.837, 5.600, 1.400), (2.937, 5.600, 1.400), respectively; two
loudspeaker sources are located at (1.337, 4.162, 1.600), and (5.337, 1.162,
1.600), respectively.

plan layout is shown in Fig. 3. For convenience, positions in the
floor plan will be designated by (z,y) coordinates with refer-
ence to the southwest corner and corresponding to meters along
the (South, West) walls. The chamber of size 6.7 m X 6.1 m X
2.9m (z X y X z) is a room with 368 electronically controlled
panels that vary the acoustic absorption of the walls, floor, and
ceiling [25]. Each panel consists of two perforated sheets whose
holes, if aligned, expose sound absorbing material behind, but if
shifted to misalign, form a highly reflective surface. The panels
are individually controlled so that the holes on one particular
panel are either fully open (absorbing state) or fully closed (re-
flective state). Therefore, by varying the binary state of each
panel in any combination, 23® different room characteristics
can be simulated.

A linear microphone array which consists of six omni-direc-
tional microphones was employed in the measurement and the
spacing between adjacent microphones is 10 cm. The array was
mounted 1.4 m above the floor and parallel to the north wall
at a distance of 50 cm. The six microphone positions are de-
noted as M1 (2.437, 5.600, 1.400), M2 (2.537, 5.600, 1.400),
M3 (2.637,5.600, 1.400), M4 (2.737, 5.600, 1.400), M5 (2.837,
5.600, 1.400), and M6 (2.937, 5.600, 1.400), respectively. The
sources were simulated by placing two loudspeakers: one at
(1.337,4.162, 1.600), and the other at (5.337, 1.162, 1.600). The
transfer functions of the acoustic channels between two loud-
speakers and six microphones were measured at a 48 kHz sam-
pling rate. Then the obtained channel impulse responses were
downsampled to a 16 kHz sampling rate and truncated to 4096
samples. These measured impulse responses will be treated as
the actual impulse responses in the TDE experiments.

B. Performance Measure

To better evaluate the performance of a time-delay estimator,
it would be helpful to classify an estimate into two comprehen-
sive categories: the class of success and the class of failure [11],
[12]. An estimate 7; for which the absolute error |7; — 7;| ex-
ceeds T./2, where T, is the signal correlation time, and 7; the
true delay, is identified as a failure or an anomaly which follows
the terminology used in [12]. Otherwise, an estimate would be
deemed as a success or a nonanomalous one. In this paper, T\ is
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Fig.4. Segment of the speech signal used as the source and sampled at 16 kHz.

defined as the width of the main lobe of the source signal auto-
correlation function (taken between the —3-dB points). For the
particular speech signal used here, which is sampled at 16 kHz,
T. is equal to 4.0 samples (0.25 ms).

After time-delay estimates are classified into the two classes,
the TDE performance is evaluated in terms of the percentage of
anomalies over the total estimates, and the mean square error
(MSE) of the nonanomalous estimates.

C. Experimental Results

Several experiments were conducted to study the character-
istics of the proposed multichannel TDE algorithm, as well as
how the TDE performance is affected by the number of micro-
phone sensors. For brevity, we report two sets of experimental
results here.

We first consider a situation where there is only one source lo-
cated in the far field (loudspeaker 1 in Fig. 3). The source signal
is a speech (from a female speaker) sampled at 16 kHz and a
duration of 4 min. A segment of the signal is shown in Fig. 4.
The six-channel observation signals are obtained by convolving
the speech source with the corresponding measured channel im-
pulse responses and adding a zero-mean, white, Gaussian noise
to each one of these outputs for a given signal-to-noise ratio
(SNR).

Two experimental conditions are considered. One consists of
light reverberation whose reverberation time, T, which is de-
fined as the time for the sound to die away to a level 60 dB
below its original level and measured by the Schroeder’s method
[26], is approximately 240 ms. The other pertains to a heavily
reverberant environment where Ty = 580 ms. In both cases,
SNR = —5 dB. The multichannel signals are partitioned into
nonoverlapping frames with a frame size of 128 milliseconds
(equivalently 2048 samples). For each frame, a delay estimate
is measured according to the estimator given by (58) with a for-
getting factor A = 0.95. Therefore, with a four-minute speech
sequence, a total of 1875 time-delay estimates are yielded, based
on which the statistics of the performance is computed.

Fig. 5 presents the estimation results using two and six mi-
crophones respectively in a condition where Tgyp = 580 ms,
and SNR = —5 dB. The x-axis shows the location in time at
which a delay estimate is made, using the signals over a short
window. The true delay in this case is 7 = —3 (samples). Ap-
parently, the estimation accuracy with six microphones is much
higher than that using two microphones. Using the performance
measure described previously, we found that the percentages of
anomalies in both conditions are rather small (approximately
zero). The MSE of the nonanomalous estimates, as a function
of the number of microphone sensors, is graphically portrayed
in Fig. 6. As seen from Fig. 6(a), the estimator yields reasonably
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figure.)

good performance in the light reverberation condition. The MSE
is approximately —12 dB when only two sensors are used (in
this case, the estimator is equivalent to the classical cross-corre-
lation method, one member of the GCC family). It is reduced to
—25 dB when one more microphone is added, and diminishes
when more than four sensors are available. This demonstrates
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anomalies and MSE of nonanomalous estimates for the second source.

the effectiveness of the algorithm in taking advantage of the re-
dundant information provided by multiple microphones to mit-
igate the effect of noise and reverberation.

Comparing Fig. 6(a) with 6(b), one can see that the MSE
of the estimator deteriorates significantly when reverberation
time becomes longer. This is understandable. As reverberation
becomes stronger, more reflections (some have a stronger en-
ergy level, and some have a longer delay) will reach the micro-
phone sensors. As a result, the peak of the cost function shifts
away from the true delay, which will eventually lead to perfor-
mance degradation. It is remarkable that, even in the heavily
reverberant environment, the TDE accuracy increases with the
number of microphones, corroborating the powerfulness of the
multichannel TDE approach in exploiting redundancy to combat
distortion.

The second set of experiments concerns the time-delay es-
timation of multiple sources. As opposed to the above experi-
ment, this time we assume that there are two sources in the far
field: one is located at the position of loudspeaker 1, and the
other at loudspeaker 2 in Fig. 3. The first source is a speech
signal as used in the previous experiment. The second source is
a music signal also sampled at 16 kHz. We further assume that
the two sources have equal energy levels. Again, independent
Gaussian noise is added to the multichannel signals to control
the SNR.
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We investigated two situations. One is free of reverberation.
The other, similar to the above single-source TDE case, con-
sists of strong reverberation where Tgg = 580 ms. The sum-
mary characteristics of the TDE performance are presented in
Figs. 7 and 8. As clearly seen, when reverberation is absent, the
relative time delays due to both sources are correctly identified,
with their anomalies being less than one percent. It is also re-
markable to notice that the delay estimation accuracy grows as
more microphones are employed. However, we observe that the
TDE performance in this case is much inferior to what obtained
in the single-source scenario. This is understandable. When two
sources are active at the same time, one source will act as un-
correlated noise to the other, resulting in SNR degradation and
performance deterioration.

Comparing Fig. 7 with Fig. 8, one can readily see that when
reverberation is present, there are more failures. For example,
for the second source, the percentage of anomalies is approx-
imately zero in the absence of reverberation. This number in-
creases almost to 20% when Tgo = 580 ms. Although the gen-
eral trend of performance is clear (improvement as the number
of sensors increases), we observe that for the first source, the
performance for the six-sensor case is slightly inferior to that
of five-sensor situation. The reason may be that the sixth mi-
crophone receives some strong reflection paths. Further work is
in progress to investigate what makes this phenomenon happen,
and how to deal with when it occurs.
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VII. CONCLUSIONS

Time-delay estimation in reverberant environments remains
a difficult challenge and further research efforts are indispens-
able. This paper has dealt with TDE, with emphasis on com-
bating reverberation. Starting with the theory of linear inter-
polation, it has introduced the concepts of multichannel cor-
relation matrix and multichannel cross correlation coefficient.
Some interesting properties and bounds of the MCCC were dis-
cussed. An efficient recursive algorithm was proposed to esti-
mate and update the MCCC when new data snapshots are avail-
able. This new definition of the MCCC was then applied to the
problem of time-delay estimation, resulting to a multichannel
TDE algorithm. It was shown that this new approach is equiva-
lent to the classical cross correlation method, one member of the
GCC family, in the two-sensor case. It can be treated as a nat-
ural generalization of the cross correlation method to the mul-
tichannel case when more than two sensors are available. An
appealing property of this new algorithm is that it can fully uti-
lizes the redundant information provided by multiple sensors to
enhance the TDE performance against distortion. Experiments
confirmed that the delay estimation accuracy increases with the
number of sensors. We also addressed time-delay estimation of
multiple sources using the multichannel approach.

APPENDIX _
BOUNDS OF THE DETERMINANT OF MATRIX R(n)

Theorem: The determinant of matrix R(n) given in (23) sat-
isfies

0 < det [ﬁ(n)] <1 (70)

Since R(n) is symmetric and is supposed to be positive

definite, it is clear that det[R(n)] > 0, which implies that

det[R(n)] > 0. The only thing we need to prove is that

det[R(n)] < 1. To do so, we first give two lemmas.
Lemma 1: Suppose a matrix M is partitioned as

A D
M- (e n)
where A and B are square matrices and A is nonsingular. Then
det(M) = det(A)det(B — CA™'D).

Proof of Lemma 1: Let the square matrices A and B in the
partitioned matrix M have dimensions p X p and g X g respec-
tively. Then it can be verified that M can be factored as follows:

(A 0\[(IL 0)\/I A-D
M= (0 Iq) (C Iq) (0 B—CA—1D> D
where I, and I, are two identity matrices of size p X p and ¢ X ¢,
respectively. Because of the special structures, the determinants
of the matrices on the right hand side of (71) can be written down
by inspection. The determinant of the first matrix is det(A), the
determinant of the second matrix is 1, and the determinant of the
third matrix is det(B — CA ' D). Since det(M) is the product

of these three determinants, the lemma 1 follows.

Lemma 2: Let det(H) be the determinant of a positive defi-
nite symmetric matrix H of dimension L X L. Then

L—1
det(H) < [T b (72)
i=0
where h;; are the diagonal elements of H.
Proof of Lemma 2: The proof follows by iterative use of
the Lemma 1. Partition the L x I, matrix H as follows:

H h
H= <hT hLL)

where H is an (L —1) x (L— 1) positive definite systems matrix,
hisan (L — 1) x 1 vector. Then the Lemma 1 tells us that

det(H) = det(H)(hzr — hTH 'h). (73)

Since H and H are positive definite, their determinants are pos-
itive. Therefore the expression in the second pair of parentheses
on the right hand side of (73) must be positive. Also, since the
inverse of a positive matrix is positive it follows that h”H~'h
is nonnegative. Hence (hz,;, — h"H~'h) < hy1,. Therefore

det(H) < hpy det(H). (74)

Repeated use of this bordering argument proves the lemma.

Proof of Theorem: From Lemma 2, we know that the de-
terminant of the matrix R(n) is less than or equal to the product
of all its diagonal elements. From (23), we know that all the di-
agonal elements of R(n) are equal to 1. We immediately have
det[R(n)] < 1. That completes the proof.
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