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Approach to Separation and Dereverberation of
Speech Signals in a Reverberant Environment
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Abstract—Blind separation of independent speech sources from
their convolutive mixtures in a reverberant acoustic environment is
a difficult problem and the state-of-the-art blind source separation
techniques are still unsatisfactory. The challenge lies in the coexis-
tence of spatial interference from competing sources and temporal
echoes due to room reverberation in the observed mixtures. Fo-
cusing only on optimizing the signal-to-interference ratio is inade-
quate for most if not all speech processing systems. In this paper,
we deduce that spatial interference and temporal echoes can be
separated and an MIMO system will be converted into

SIMO systems that are free of spatial interference. Further-
more we show that the channel matrices of these SIMO systems
are irreducible if the channels from the same source in the MIMO
system do not share common zeros. Thereafter we can apply the
Bezout theorem to remove reverberation in those SIMO systems.
Such a two-stage procedure leads to a novel sequential source sep-
aration and speech dereverberation algorithm based on blind mul-
tichannel identification. Simulations with measurements obtained
in the varechoic chamber at Bell Labs demonstrate the success
and robustness of the proposed algorithm in highly reverberant
acoustic environments.

Index Terms—Bezout theorem, blind channel identification
(BCI), blind source separation (BSS), independent component
analysis (ICA), multiple-input multiple-output (MIMO) systems,
single-input multiple-output (SIMO) systems, speech dereverber-
ation.

I. INTRODUCTION

SOURCE separation techniques aim to extract independent
signals from their linear mixtures captured by a number

of sensors. In many cases, a priori knowledge about the char-
acteristics of the source signals and the way in which they
are mixed together is either inaccessible or very expensive to
acquire. Consequently, the separation is carried out only on the
basis of the mixtures with the assumption of mutual statistical
independence among the source signals and is hence called
a “blind” method. The task of blind source separation (BSS)
is typically accomplished by independent component analysis
(ICA) algorithms that assume mutually independent source sig-
nals. However, source signals distorted by arbitrary filters still
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are independent of each other. Thereafter deconvolution needs
to be performed to mitigate the linear distortion and reconstruct
the involved source signals. Recently blind source separation
and deconvolution has become an increasingly active area of
research because of a variety of its applications, e.g., biomed-
ical signal analysis and processing [1], image enhancement [2],
acoustic and speech processing [3], multiple-antenna wireless
communications [4], etc.

In the BSS problem, the mixing procedure is generally delin-
eated with a multiple-input multiple-output (MIMO) mathemat-
ical model. Such a model is either memoryless or with memory,
being referred to as instantaneous and convolutive mixtures, re-
spectively. The former was predominantly the focus of early
work on BSS for its relative simplicity [5], [6]. But convolutive
mixtures are more realistic and recently have gained much more
attention [7]. A prevailing approach is to transform a computa-
tionally intensive convolutive BSS problem in the time domain
into multiple independent instantaneous BSS problems in the
frequency domain [8]. However, a fundamental problem of per-
mutation ambiguity arises in frequency-domain BSS algorithms
for convolutive mixtures and limits their separation performance
[9]. This problem is less prominent when the mixing channels
have only few taps in their impulse responses as encountered in
wireless communications. But in a reverberant acoustic environ-
ment, the length of the mixing channels can be very long (filter
lengths in thousands of taps are not uncommon) and solving
the permutation ambiguity problem is very challenging [10]. In
this paper, we will examine the problem of blind separation and
dereverberation of speech signals in a reverberant environment
from a different perspective and propose a blind channel identi-
fication (BCI)-based two-stage algorithm.

Separating independent, competing speech signals in a
reverberant environment is well known as the cocktail party
phenomenon. Although research in cognitive psychology is
yet to produce thorough understanding about how humans
concentrate their attention on a speaker of interest in a noisy
cocktail party and block out other interfering conversations in
the room, traditional BSS algorithms treat the MIMO acoustic
system as a black box and are determined to recover the original
speech source signals with no intention to shed light on the
inside of the box. As a result, such characteristics of the room
acoustics as the locations of independent speech sources are
not explicitly provided in the solutions of traditional BSS
algorithms. For each speech source, the solution is only a
monaural signal. Recently, the need for attaining the spatial
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perceptibility of separated speech signals has emerged in
stereo or multichannel speech processing systems and pleas-
ingly efforts have been made to meet it [11]. In this so-called
single-input multiple-output (SIMO) based BSS algorithm, a
number of independent component analyzers are constructed to
estimate distinct source observations corresponding to different
microphones. It intends to separate speech components of the
mixture at each microphone. Therefore the solution for each
source is a set of the SIMO outputs. This work is interesting
and inspirational. However, one can easily determine the com-
ponent of a microphone signal corresponding to a specified
speech source after its monaural signal has been successfully
separated from the mixtures. It is not clear that the SIMO-based
BSS algorithm would be more attractive for producing better
voice quality, not even to mention the overwhelming amount of
computational complexity that it further causes to prevent all
ICA’s from adapting in the same manner. Therefore, we attempt
to take a different strategy to tackle this problem. Instead of
estimating the source speech signals directly, we would like
to blindly identify the unknown MIMO system first, and then
extract the desired speech signals with perfect separation and
dereverberation. Since the MIMO system is decomposed into
a number of SIMO systems which will be blindly identified at
different time, the proposed source separation algorithm will
not have the annoying permutation ambiguity problem.

In a MIMO acoustic system, the speech mixtures contain both
speech echoes due to reverberation by room surfaces and inter-
ference from other co-existing sources. To recover the source
signals, not only interference but also echoes need to be re-
moved. In this paper, we will show that echoes and interfer-
ence can be completely separated by converting an
MIMO system into interference-free SIMO systems. The
channel matrices of these SIMO systems will be irreducible
if the channels from the same input in the MIMO system do
not share common zeros. For irreducible SIMO systems, dere-
verberation can be performed by using the Bezout theorem. If
co-prime channels are not true for all inputs, we will deduce
what is the best possible solution for just partial dereverbera-
tion. This discussion leads to the proposal of a sequential source
separation and speech dereverberation algorithm based on blind
multichannel identification. Simulation results show that this al-
gorithm performs well at low noise levels (for achieving a reli-
able estimation of channel impulse responses with blind channel
identification algorithms) with high signal-to-interference ratio
(SIR) and low speech distortion. The idea of separating spatial
interference and temporal echoes was first proposed by the au-
thors in an earlier study about MIMO equalization for wireless
communications [12]. In this paper, we will see that it can be
successfully applied in acoustic environments.

This paper is organized as follows. Section II delineates the
MIMO signal model and briefly reviews traditional approaches
to the problem of blind source separation and speech derever-
beration. In Section III, we demonstrate how to blindly identify
a MIMO system. Section IV explains how to derive inde-
pendent SIMO systems from a MIMO system with speech
sources such that each SIMO system is free of interference from
other sources. In Section V, we show how to perform derever-
beration for a SIMO system using the Bezout theorem. Sec-

Fig. 1. Illustration of a MIMO FIR acoustic system havingM speech sources
and N microphones.

tion VI evaluates the proposed approach by simulations. Finally,
we give our conclusions in Section VII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. MIMO System

Suppose that we have independent speech sources and
microphones with in a room, which is mathematically
described by an MIMO FIR system as shown in Fig. 1.
At the th microphone and at the th sample time, we have

(1)

where denotes the transpose of a matrix or a vector

is the impulse response (of length , , ) between source
and microphone

is a vector containing the last samples of the th source
signal , and is a zero-mean additive white Gaussian
noise (AWGN) with variance , .

Using the transform, the signal model of the MIMO system
(1) is expressed as

(2)
where

(3)
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B. Traditional Blind Source Separation and Speech
Dereverberation Approaches

In BSS methods, the a priori knowledge about neither the
channel impulse responses nor the source signals
is assumed. Only the mutual independence among the source
signals is utilized to separate them from the observations of their
mixtures .

In the general form, traditional BSS algorithms construct
a set of de-mixing filters and apply them to the microphone
signals. The output of the de-mixing system are regarded as
estimates of the separated signals, which are presumably in-
dependent. Existing BSS methods differ in the way that the
dependence of the separated speech signals is defined, or equiv-
alently, the employed criteria for optimizing the de-mixing fil-
ters. Accordingly, BSS methods can be broadly dichotomized
into the class of second-order statistics (SOS) algorithms and
the class of higher-order statistics (HOS) algorithms. To min-
imize estimation variance, computing an HOS measure de-
mands a large number of observations, which leads to an in-
crease in computational complexity. However, the assumption
of mutual independence alone is not sufficient to solve the
problem using only SOS and hence speech’s nonstationary na-
ture is exploited.

With a de-mixing system reinforcing the assumption of
mutual independence, the speech signals are separated inher-
ently up to an arbitrary filter and permutation. Permutation
inconsistency is a challenging problem in a frequency-domain
approach and will apparently impair the separation perfor-
mance. Even if permutation ambiguity could be somehow
overcome, the arbitrary filter itself implies undesirable dis-
tortion and consequently speech quality can not be predicted.
Currently the research on this problem is in the direction of how
to incorporate the distortion of separated speech into the cost
function while adapting the de-mixing filters, e.g., the minimal
distortion principle in [13]. However, the convergence would
be sensitive to the relative weights of the two components, i.e.,
mutual independence and speech distortion, in the cost function
and the overall performance is limited. New ideas are necessary
for solving the problem of blind source separation and speech
dereverberation.

III. BLIND IDENTIFICATION OF A MIMO SYSTEM

In this paper, we intend to separate competing speech sources
by first blindly identifying the MIMO FIR system. Blind MIMO
identification is difficult even for communication systems with
short channel impulse responses. It becomes dramatically com-
plicated when an acoustic system is the target as the case studied
in this paper. Trying to solve it all at once involves a huge
number of parameters to estimate and the current research in this
area remains at the stage of feasibility investigations. Moreover,
scaling and permutation ambiguities are similar to what have
been observed in the BSS problem. Therefore we propose to de-
compose the problem into several subproblems in which SIMO
systems are blindly identified. We assume that from time to
time each speaker occupies at least one exclusive interval alone
and when they start talking simultaneously the room acoustics
have not significantly varied. Then in each single-talk interval a

SIMO system will be blindly identified and its channel impulse
responses will be saved for later use in source separation and
speech deconvolution during double or multiple talk periods.
The speech source detection technique that distinguishes single
and multiple talk is an interesting and important issue, but is be-
yond the scope of this paper. The reader who is interested in this
topic can read a recently published paper on this problem [14]
and references therein.

Blind identification of a SIMO system can be achieved with
only the SOS of system outputs as long as the following two
conditions are met [15]:

1) polynomials formed from the channel impulse responses
are co-prime, i.e., the channel transfer functions do not
share any common zeros;

2) autocorrelation matrix of the source signal is of full rank,
making the SIMO system fully excited.

In an earlier study [16], we developed a number of adaptive
algorithms for blind identification of a SIMO system in the
time domain, including multichannel LMS (MCLMS) and
multichannel Newton methods. The idea of adaptive blind
SIMO identification was later implemented in the frequency
domain for computational efficiency and fast convergence
[17]. This so-called unconstrained normalized multichannel
frequency-domain LMS (UNMCFLMS) algorithm was shown
to perform well with an acoustic system and will be employed
in this paper.

IV. SEPARATING SPATIAL INTERFERENCE

AND TEMPORAL ECHOES

In this section, we will explain how to separate spatial inter-
ference from other co-existing sources and temporal echoes due
to the reflection by room surfaces. From the signal processing
perspective, this separation is achieved by converting an
MIMO system into interference-free SIMO systems. The de-
velopment begins with an example of the simplest 2 3 MIMO
system and then extends to a general case.

A. Example: Conversion of a 2 3 MIMO System to Two
SIMO Systems

For a 2 3 MIMO system, the spatial interference can be
cancelled by using two output signals at a time. For instance,
we can remove the interference in and caused by

(from the perspective of source 1) as follows:

(4)

Similarly, the interference caused by (from the perspec-
tive of source 2) in these two outputs can also be cancelled.
Therefore, by selecting different pairs from the three outputs, we
could obtain six interference-free signals and then could con-
struct two separate single-input three-output systems with re-
spect to two distinct inputs, respectively. This procedure is vi-
sualized in Fig. 2 and will be described in a more systematic
way in the following.
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Fig. 2. Illustration of the conversion from a 2 � 3 MIMO system to two
interference-free SIMO systems with respect to (a) s (k) and (b) s (k).

Let us consider the following equation:

(5)

where , . This means that (5) considers only
two microphone signals for each . The objective is to find the
polynomials , , 2, 3, , in such a way that

(6)

which represents a SIMO system where is the source signal,
, , 2, 3, are the received microphone signals,

are the corresponding acoustic paths, and is the noise at
microphone . Using (2) in (5), we deduce that

(7)

(8)

(9)

As shown in Fig. 2, one possibility is to choose

(10)

In this case, we find that

(11)

and

(12)

Since , where is the degree of a
polynomial, therefore . We can see
from (11) that polynomials , , and
share common zeros if , , and [or if

, , and ] share common zeros.
Now suppose that ,

where denotes the greatest common divisor of the poly-
nomials involved. We have

(13)

It is clear that the signal in (5) can be canceled by using the
polynomials [instead of as given in (10)], so
that the SIMO system represented by (6) will change to

(14)

where

It is worth noticing that and that
polynomials , , and share common
zeros if and only if , , and share common
zeros.
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The second SIMO system corresponding to the source
can be derived in a similar way. Indeed, we can find the output
signals

(15)

by making ( , 2, 3) where the noise is

This means that the two SIMO systems [for and , repre-
sented by (6) and (15)] have identical channels but the noise at
the microphones is different.

Now let’s see what we can do if ( , 2, 3) share
common zeros. Suppose that is the greatest common di-
visor of , , and . Then we have

(16)

and the SIMO system of (15) becomes

(17)

where

We see that

and in general .

B. Generalization

The approach to separating spatial interference and temporal
echoes explained in the previous subsection on a simple ex-
ample will be generalized here to an MIMO system

. We begin with writing (2) into a vector/matrix form

(18)

where

...
...

...
...

If
, then and the channel

matrix can be rewritten as

(19)

where is an matrix containing the elements
and is an diagonal matrix with

as its nonzero components.
Let us choose from microphone outputs and we

have different ways of doing so. For the th
combination, we denote the index of the

selected microphone signals as , , and get
an MIMO subsystem.

Consider the following equations:

(20)

where

...
...

...
...

Let be the matrix obtained from the system’s
channel matrix by keeping its rows corresponding to the

selected microphone signals. Then similar to (18), we have

(21)

where

Substituting (21) into (20) yields

(22)

In order to remove the spatial interference, the objective here
is to find the matrix whose components are linear com-
binations of such that the product

(23)

would be a diagonal matrix. Consequently, we have

(24)

In the above, we showed that spatial interference and tem-
poral echoes are separable by converting an MIMO
acoustic system into interference-free SIMO systems.
Although source separation has been achieved, the obtained
multiple interference-free speech signals would sound possibly
more reverberant due to the prolonged impulse response of
the equivalent channels. In this section, we will illustrate how
these annoying temporal echoes can be perfectly removed
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and the original speech signal can be recovered from a SIMO
system.If [obbtained from in a similar way as

is constructed] is not equal to the identity matrix, then
, where has full column normal

rank in acoustic environments as we assume in this paper1 (i.e.,
, see [18] for a definition of normal rank),

and the interference-free signals are determined as

(25)

and

(26)

Obviously a good choice for to make the product
a diagonal matrix is the adjoint of matrix ,

i.e., the th element of is the th cofactor of
. Consequently, the polynomial would be the

determinant of .
Since

and are co-prime, the poly-
nomials share common zeros if
and only if the polynomials share
common zeros. Therefore, if the channels with respect to any
one input are co-prime for an MIMO system, we can
convert it into interference-free SIMO systems whose
channels are also co-prime, i.e., their channel matrices are
irreducible.

Also, it can easily be checked that
. As a result, the length of the FIR filter would be

(27)

V. SPEECH DEREVERBERATION FOR SIMO SYSTEMS

A. Principle

For the SIMO system with respect to source
, we consider the polynomials

and the equation

(28)

1For a square matrix (M � M), the normal rank is full if and only if the
determinant, which is a polynomial in z, is not identically zero for all z. In this
case, the rank is less thanM only at a finite number of points in the z plane.

The polynomials should be found in such a way that
in the absence of noise by using the Bezout

theorem which is mathematically expressed as follows:

(29)

In other words, if the polynomials
have no common zeros (which is equivalent to saying that
the polynomials , , don’t share any
common zeros), it is possible to perfectly equalize (in the
noiseless case) each one of the SIMO systems. The idea of
using the Bezout theorem for dereverberation of an acoustic
SIMO system was first proposed in [19] in the context of room
acoustics, where the method is more widely referred to as the
MINT theory. It relieves the constraint on a single-channel
acoustic system for perfect dereverberation that the channel
impulse response must be a minimum-phase polynomial.

If the channels of the SIMO system share common zeros, i.e.,

(30)
then we have

(31)

and the polynomials can be found such that

(32)

In this case, (28) becomes

(33)

We see that by using the Bezout theorem, the th SIMO system
can be equalized up to the polynomial . So when there
are common zeros, the Bezout theorem can only partially dere-
verberate the speech signal. For complete dereverberation, we
have to add another stage to the process by examining .
If is minimum phase (i.e., the zeros are inside the unit
circle), its inversion is stable and a complete dereverberation
still can be attained

(34)

Otherwise, a least squares solution is derived to at best minimize
the effect of in (33).

To find the dereverberation filters, we write the Bezout (29)
in the time domain as

(35)
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where

is the length of the FIR filter

...
. . .

. . .
...
...

. . .
...

...
...

. . .
...

is an matrix, is the length of the FIR
filter , and

is an vector. In order to have a unique solution
for (35), must be chosen in such a way that is a square
matrix. In this case, we have

(36)

Using (27), the length of the dereverberation filter is bounded
by

(37)

B. Least-Squares Implementation

It is now clear that by using the Bezout theorem the SIMO
system can be perfected dereverberated in the noiseless case
as long as their channel impulse responses share no common
zeros. In addition, we derived what is the minimum length
of the dereverberation filters, as given in (37). Although finding
the shortest dereverberation filters involves the lowest compu-
tational complexity and leads to the most cost effective imple-
mentation, the performance may not be the best due to noise in
practice. Moreover, the smallest may not be even possible
since (36) does not guarantee an integer solution. Therefore, we
choose a larger than necessary in our implementation and
solve (35) for in the least squares sense

(38)

where

is the pseudo-inverse of the matrix . If a decision delay is
taken into account, then the dereverberation filters turn out to be

(39)

Fig. 3. Floor plan of the varechoic chamber at Bell Labs (coordinate values
measured in meters).

where

VI. SIMULATIONS

In this section, we will evaluate the performance of the pro-
posed blind source separation and speech dereverberation algo-
rithm via simulations in realistic acoustic environments.

A. Performance Measures

Similar to what was adopted in our earlier study [17], we will
use the normalized projection misalignment (NPM) to evaluate
the performance of a BCI algorithm [20]. The NPM is defined
as

(40)

where

is the projection misalignment vector. By projecting onto
and defining a projection error, we take into account only the
intrinsic misalignment of the channel estimate, disregarding an
arbitrary gain factor.

To evaluate the performance of source separation and speech
dereverberation, two measures, namely signal-to-interference
ratio (SIR) and speech spectral distortion, are used in the simu-
lations. For the SIR, we referred to the notion given in [10] but
defined the measure in a different manner since their definition
is applicable only for an MIMO system. In this paper,
our interest is in the more general MIMO systems with

.
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Fig. 4. Time sequence and spectrogram (30 Hz bandwidth) of the two speech source signals used in the simulations for the first 1.5 s. (a) s (k) (male speaker)
and (b) s (k) (female speaker).

TABLE I
PERFORMANCE OF THE SOURCE SEPARATION AND SPEECH DEVERBERATION ALGORITHM BASED ON THE BATCH (SVD) AND ADAPTIVE FREQUENCY-DOMAIN BCI

(UNMCFLMS) IMPLEMENTATIONS IN THE VARECHOIC CHAMBER AT BELL LABS WITH DIFFERENT PANEL CONFIGURATIONS

We first define the average input SIR at microphone as

(41)

where denotes linear convolution. Then the overall average
input SIR is given by

(42)

The output SIR is defined using the same principle but the ex-
pression will be more complicated. For a concise presentation,
we denote ( , ) as the
impulse response of the equivalent channel from the th input to
the th output for the th separation subsystem. From

(22) and (23), we know that corresponds to the ( )th el-
ement of and . Then the average output
SIR for the th subsystem is:

(43)

Finally, the overall average output SIR is found as

(44)

To assess the quality of dereverberated speech signals, we em-
ployed the Itakura–Saito (IS) distortion measure [21], which is
the ratio of the residual energies produced by the original speech
when inverse filtered using the LP coefficients derived from the
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Fig. 5. Running average (1000 samples) of the cost function and normalized projection misalignment for blindly identifying the SIMO system corresponding to
(a) source 1 and (b) source 2 with the UNMCFLMS algorithm in the varechoic chamber with 75% of panels open.

Fig. 6. Comparison of impulse responses between the actual channels and their estimates determined by using the UNMCFLMS algorithm in the varechoic
chamber with 75% of panels open. Channels correspond to (a) source 1 and (b) source 2.

original and processed speech. Let and be the LP coeffi-
cient vectors of an original speech signal frame and the corre-
sponding processed speech signal frame under examination,
respectively. Denote as the Toeplitz autocorrelation matrix
of the original speech signal. Then the IS measure is given as:

(45)

Such a measure is calculated on a frame-by-frame basis. For the
whole sequence of two speech signals, the mean IS measure is
obtained by averaging over all frames. According to [23],
the IS measure exhibits a high correlation (0.59) with subjective
judgments, suggesting that the IS distance is a good objective
measure of speech quality. It was reported in [24] that the dif-
ference in Mean Opinion Score (MOS) between two processed
speech signals would be less than 1.6 if their IS measure is less
than 0.5 for various speech codecs. Many experiments in speech
recognition show that if the IS measure is less than about 0.1, the
two spectra that we compare are perceptually nearly identical.

In our simulations, IS measures are calculated at different
points (after source separation and after speech dereverberation)
and with respect to every source. After source separation and for

source , the IS measure is obtained by av-
eraging the result of each one of SIMO outputs and is denoted
by . After speech dereverberation, the final IS measure is
denoted by .

B. Experimental Setup

The simulations were conducted with the impulse responses
measured in the varechoic chamber at Bell Labs [25]. A diagram
of the floor plan layout is shown in Fig. 3. For convenience,
positions in the floor plan are designated by coordinates
with reference to the southwest corner and corresponding to
meters along the (South, West) walls. The chamber measures

wide by deep by high. It
is a rectangular room with 368 electronically controlled panels
that vary the acoustic absorption of the walls, floor, and ceiling
[26]. Each panel consists of two perforated sheets whose holes,
if aligned, expose sound absorbing material (fiberglass) behind,
but if shifted to misalign, form a highly reflective surface. The
panels are individually controlled so that the holes on one partic-
ular panel are either fully open (absorbing state) or fully closed
(reflective state). Therefore, by varying the binary state of each
panel in any combination, different room characteristics
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Fig. 7. Time sequence and spectrogram (30 Hz bandwidth) of (a) x (k), (b) x (k), (c) y (k), (d) y (k), (e) ŝ (k), and (f) ŝ (k) for the experiment carried
out in the varechoic chamber with 75% of panels open. This experiment used the UNMCFLMS algorithm for BCI.

can be simulated. In the database of channel impulse responses
from [25], there are four panel configurations with 89%, 75%,
30%, and 0% of panels open, respectively corresponding to ap-
proximately 240, 310, 380, and 580 ms 60 dB reverberation time
in the 20–4000 Hz band. All four configurations were used in
this paper for evaluating performance of the proposed algorithm.

A linear microphone array which consists of 22 omni-
directional microphones was employed in the measurement
and the spacing between adjacent microphones is about 10
cm. The array was mounted 1.4 m above the floor and parallel
to the North wall at a distance of 50 cm. A loudspeaker was
placed at 31 different pre-specified positions to measure the
impulse response to each microphone. In the simulations, three
microphones and two speaker positions, which form a 2 3
MIMO system, were chosen and their locations are shown in

Fig. 3. Signals were sampled at 8 kHz and the original impulse
response measurements have 4096 samples. In the cases of 89%
and 75% panels open, energy in reverberation decays quickly
with arrival time and we cut impulse responses at .
When 30% or none of planes are open, we set . In
terms of the two speakers, one male and the other female, the
time sequence and spectrogram (30 Hz bandwidth) of their
speech for the first 1.5 s are shown in Fig. 4. Silent periods
were manually removed from the speech signals to make the
BCI methods converge faster due to the reduced nonstation-
arity in the inputs and to make the average IS measures more
meaningful with respect to speech only. This implies that in
practice a voice activity detector needs to be used. After having
source signals and channel impulse responses, we calculated
microphone outputs by convolution.
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Fig. 8. Running average (1000 samples) of the cost function and normalized projection misalignment for blindly identifying the SIMO system corresponding to
(a) source 1 and (b) source 2 with the UNMCFLMS algorithm in the varechoic chamber with all panels closed.

Fig. 9. Comparison of impulse responses between the actual channels and their estimates determined by using the UNMCFLMS algorithm in the varechoic
chamber with all panels closed. Channels correspond to (a) source 1 and (b) source 2.

As we expected, the performance of the proposed source sep-
aration and speech dereverberation algorithm would be greatly
affected by the accuracy of the blindly estimated channel im-
pulse responses. In the simulations, both adaptive (the UNM-
CFLMS algorithm) and batch (the SVD-based algorithm) im-
plementations were investigated [17]. For the batch method,
the empirical spatial covariance matrix was obtained over the
first 2500 and 3000 samples of the microphone captures for

and 512, respectively. In addition, additive noise
was inserted at each microphone output at 75 dB signal-to-noise
ratio (SNR). In experiments with the adaptive UNMCFLMS al-
gorithm, no background noise was assumed. For source separa-
tion and speech dereverberation, speech signals of duration 10 s
were utilized to assess the performance. The decision delay in
(39) was fixed as .

C. Experimental Results

Table I summarizes the experimental results for all four dif-
ferent room acoustics. Figs. 5–7 visualize what was observed in

the experiment with 75% of panels open, and Figs. 8–10 with
all panels closed.

Let us first examine the accuracy of the channel impulse re-
sponses blindly estimated by the adaptive and batch BCI algo-
rithms. Comparing Figs. 5 and 8 reveals that the UNMCFLMS
converges slower as increases. Given the same amount
of microphone observations, the final projection misalignment
error would be larger for the UNMCFLMS to identify a more
reverberant SIMO system. Relatively, the batch method is more
accurate and seems less sensitive to . After it keeps col-
lecting microphone outputs for only 0.375 s, the batch BCI
method can produce a reliable channel estimate with less than

29 dB NPM for SIMO systems with long channels of length
. However, performing SVD of a ma-

trix in these simulations is too computationally intensive to be
accomplished in real time by a commercial processor in the
foreseeable near future. The reason why we carried out experi-
ments with the batch BCI implementation and present here the
results is to get an idea about what is the best possible per-
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Fig. 10. Time sequence and spectrogram (30 Hz bandwidth) of (a) x (k), (b) x (k), (c) y (k), (d) y (k), (e) ŝ (k), and (f) ŝ (k) for the experiment
carried out in the varechoic chamber with all panels closed. This experiment used the UNMCFLMS algorithm for BCI.

formance of the proposed blind source separation and speech
dereverberation approach.

Figs. 7 and 10 illustrate how spatial interference and tem-
poral echoes are separated and how the two speech signals are
finally recovered. Examining these figures together with the
data in Table I, we see that the output SIR’s are very high (at
least 44 dB) after the conversion of the MIMO system into
several SIMO systems. But meanwhile the separated signals
sound more echoic and have more distortion, resulting in
large IS measures (greater than 1.9) and vague harmonics in
periods of voiced speech on the narrow-band spectrograms.
After dereverberation, the speech signals are satisfactorily
recovered though delayed [clearly seen from time sequences
of the recovered signals and in these figures]

with a very low IS measure (less than 0.2 even in the worst
case). As explained before, speech with such an amount of
distortion would not change its perceptual quality with respect
to either humans or an speech recognition system. Therefore,
the simulations show some promise of successful use of the
proposed algorithm in prospect speech processing systems.

VII. CONCLUSIONS

Room reverberation makes blind separation of speech
sources from their convolutive mixtures a very difficult
problem in a real reverberant environment. Existing blind
source separation methods maximize solely the signal-to-in-
terference ratio and possibly cause high distortion in their
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separated signals, which is neither pleasing to a listener nor
can be used in following speech processing systems. We
demonstrated in this paper that spatial interference from com-
peting sources and temporal echoes due to room reverberation
can be perfectly separated by converting a MIMO system into
several interference-free SIMO systems. The channel matrices
of these SIMO systems are irreducible given that the channels
from the same source in the MIMO system share no common
zeros. For these SIMO systems, the original speech can be
easily restored by using the Bezout theorem. If some channels
share common zeros, we deduced what might be the best
possible solution for speech dereverberation. This derivation
led to the proposal of a novel sequential source separation and
speech dereverberation algorithm. We conducted experiments
using real impulse responses measured in the varechoic
chamber at Bell Labs. The results demonstrated the success
and robustness of the proposed algorithm in highly reverberant
acoustic environments.
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