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On the Importance of the Pearson Correlation
Coefficient in Noise Reduction
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Abstract—Noise reduction, which aims at estimating a clean
speech from noisy observations, has attracted a considerable
amount of research and engineering attention over the past few
decades. In the single-channel scenario, an estimate of the clean
speech can be obtained by passing the noisy signal picked up by
the microphone through a linear filter/transformation. The core
issue, then, is how to find an optimal filter/transformation such
that, after the filtering process, the signal-to-noise ratio (SNR) is
improved but the desired speech signal is not noticeably distorted.
Most of the existing optimal filters (such as the Wiener filter and
subspace transformation) are formulated from the mean-square
error (MSE) criterion. However, with the MSE formulation, many
desired properties of the optimal noise-reduction filters such as
the SNR behavior cannot be seen. In this paper, we present a
new criterion based on the Pearson correlation coefficient (PCC).
We show that in the context of noise reduction the squared PCC
(SPCC) has many appealing properties and can be used as an
optimization cost function to derive many optimal and suboptimal
noise-reduction filters. The clear advantage of using the SPCC
over the MSE is that the noise-reduction performance (in terms
of the SNR improvement and speech distortion) of the resulting
optimal filters can be easily analyzed. This shows that, as far as
noise reduction is concerned, the SPCC-based cost function serves
as a more natural criterion to optimize as compared to the MSE.

Index Terms—Mean-square error (MSE), noise reduction,
Pearson correlation coefficient, speech distortion, speech enhance-
ment, Wiener filter.

I. INTRODUCTION

THE PROBLEM of noise reduction, as its name indicates,
is to suppress the unwanted noise, thereby enhancing a de-

sired speech signal in terms of speech quality and intelligibility.
The difficulty of this problem varies from application to applica-
tion, and also depends on the system configuration. In general, if
more microphone channels are available, the problem would be
easier to solve, at least theoretically. For example, when an array
of microphones can be used, a beam can be formed and steered
to a desired direction. As a result, the signal propagating from
the desired direction will be passed through without degradation,
while signals originating from all other directions will either
suffer a certain amount of attenuation or be completely rejected
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[1]–[3]. In the two-microphone case, with one microphone
picking up the noisy signal and the other measuring the noise
field, we can use the latter microphone signal as a noise reference
and eliminate the noise in the former microphone by means of
adaptive cancellation [4]–[8]. However, most of today’s commu-
nication devices are equipped with only one microphone. In this
case, noise reduction becomes a very difficult problem since no
reference of the noise is accessible and the clean speech cannot be
preprocessed prior to being corrupted by noise. Due to its wide
range of potential applications, however, this single-channel
noise-reduction problem has attracted a significant amount of
research attention, and is also the focus of this paper.

In the single-channel scenario, the observed microphone
signal can be modeled as a superposition of the clean speech
and noise. In order to reduce the level of noise, we need to pass
the microphone signal through a filter/transformation [9]–[24].
Normally, we only consider linear filters/transformations since
the nonlinear ones are much more difficult to design and analyze.
So, the problem of noise reduction is to find an optimal linear
filter such that, after the filtering process, the signal-to-noise
ratio (SNR) would be improved; in other words, the microphone
signal would become cleaner. However, since the filtering oper-
ation will not only attenuate the noise, but also affect the speech
signal, careful attention has to be paid to the speech distortion
while forming the optimal filter. Currently, most existing ap-
proaches, such as the Wiener filter and the subspace method, are
derived from the mean-square-error (MSE) criterion. Although
the MSE criterion has been well studied and understood, the
application of this principle to noise reduction often masks many
important properties of the noise-reduction filter. For example,
it is difficult to see the SNR behavior since there is no direct
connection between the SNR and the MSE criterion.

In this paper, we present a new principle based on the Pearson
correlation coefficient (PCC). PCC is a statistical metric that
measures the strength and direction of a linear relationship be-
tween two random variables [25]–[27]. It has been widely used
in many applications such as time-delay estimation [28], pattern
recognition [29], data analysis, to name a few. In this paper,
we discuss the use of the PCC for noise reduction, which has
not been addressed before. We will introduce the concept of the
squared PCC (SPCC) and discuss many interesting properties of
the SPCC associated with the clean speech, noise, noisy speech,
and clean speech estimate. We show that in the context of noise
reduction, minimizing the MSE is equivalent to maximizing the
SPCC between the clean speech and its estimate. Similar to the
MSE, we can derive the Wiener filter and many other optimal
filters with the SPCC-based criterion. The clear advantage of
using this new criterion over the MSE is that the noise-reduc-
tion performance (in terms of the SNR improvement and speech
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distortion) of the resulting optimal filters can be easily analyzed.
This shows that, for the problem of noise reduction, the SPCC
serves as a more natural criterion to optimize as compared to the
MSE.

II. PROBLEM FORMULATION AND DEFINITIONS

The noise-reduction problem considered in this paper is to
recover the signal of interest (zero-mean, clean speech)
from the noisy observation (microphone signal)

(1)

where is the unwanted additive noise, which is assumed to
be a zero-mean random process (white or colored) and uncorre-
lated with . An estimate of can be obtained by passing

through a linear filter, i.e.,

(2)

where

is a finite-impulse response (FIR) filter of length , superscript
denotes transpose of a vector or a matrix, and

With this formulation, the objective of noise reduction is to
find an optimal filter that would attenuate the noise as much as
possible while keeping the distortion of the clean speech low.
This apparently requires the filter length to satisfy since
there will be no noise reduction, but just a volume adjustment if

. In addition, the filter cannot be , otherwise the output
would be muted off.

Note that all three random variables , , and as given in
(1) and (2) are linearly related. This observation is key in order
to be able to use the PCC as a criterion to estimate the optimal
noise-reduction filter. However, before we discuss this criterion,
let us first give some important measures that will be extensively
used later on.

One of the most frequently used measures in noise reduction
is the SNR. With the signal model given in (1), the input SNR is
defined as the intensity of the signal of interest relatively to the
intensity of the background noise, i.e.,

SNR (3)

where and are the variances
of the signals and , respectively, with denoting
mathematical expectation.

After noise reduction, the output SNR can be written as
[30], [31]

SNR (4)

where

are the covariance matrices of the signals and , respec-
tively. The most important goal of noise reduction is to improve
the SNR. Therefore, we must have SNR SNR.

Another important measure is the noise-reduction factor,
which is defined as the ratio between the power of the original
noise and that of the residual noise after filtering [30], [31]

(5)

The larger the value of , the more the noise is reduced.
After the filtering operation, the residual noise level is expected
to be lower than that of the original noise level. So, this factor
should be lower bounded by 1.

The filtering operation will distort the speech signal. To mea-
sure the amount of speech distortion, we use the concept of
speech-distortion index, which is defined as the attenuation in
speech power relatively to the power of the original clean speech
[30], [31]

(6)

where

(7)

This speech-distortion index is lower bounded by 0 and ex-
pected to be upper bounded by 1. The larger the value of ,
the more the speech is distorted. The last two definitions (noise-
reduction factor and speech-distortion index) are directly de-
rived from the MSE criterion.

III. PEARSON CORRELATION COEFFICIENT

Let and be two zero-mean real-valued random vari-
ables. The Pearson correlation coefficient (PCC) is defined as
[25]–[27]

(8)

where is the cross-correlation between and , and
and are the variances of the signals and ,

respectively. In the context of noise reduction, it will be more
convenient to work with the squared Pearson correlation coeffi-
cient (SPCC)

(9)

One of the most important properties of the SPCC is that

(10)
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The SPCC gives an indication on the strength of the linear
relationship between the two random variables and . If

, then and are said to be uncorrelated. The
closer the value of is to 1, the stronger the correlation
between the two variables. If the two variables are independent,
then . However, the converse is not true because
the SPCC detects only linear dependencies between the two
variables and . For a nonlinear dependency, the SPCC may
be equal to zero. However, in the special case when and are
jointly normal, “independent” is equivalent to “uncorrelated.”

IV. RELATIONS BETWEEN NOISE REDUCTION AND SPCC

In this section, we discuss many interesting properties re-
garding the SPCCs among the four signals , , , and : some
of these properties are related to noise reduction, and others may
provide an indication of the degree of speech distortion.

The SPCC between and [as defined in (1)] is

SNR
SNR

(11)

where is the variance of the signal
.

The SPCC between and [as defined in (2)] is

SNR
SNR

(12)

where is the covariance
matrix of the signal .

Property 1: We have

(13)

where

(14)

and

SNR
SNR

(15)

The SPCC can be viewed as a speech-distortion
index. If (no speech distortion) then

. The closer the value of is to 0, the more the
speech signal is distorted (except for the simple delay filter).
The SPCC shows the SNR improvement, so it
can be viewed as a noise-reduction index that reaches its max-
imum when SNR is maximized.

Property 1 is fundamental in the noise-reduction problem. It
shows that the SPCC , which can be a cost function
as explained later, is simply the product of two important indices
reflecting noise reduction and speech distortion. In contrast, the
MSE (see next section) has a much more complex form with no
real physical meaning in the context of noise reduction.

Property 2: We have

SNR
SNR

(16)

with equality when .
Proof: This property follows immediately from (12) since

.
Property 3: We have

(17)

The SPCC can be viewed as a speech-distortion
measure since evaluates the degree of speech dis-
tortion due to the filtering process.

Property 4: We have

SNR
SNR

(18)

with equality when .
Proof: This property follows immediately from (17) since

.
Property 4 shows that speech distortion is unavoidable when

we achieve noise reduction and the amount of speech distortion
depends on the input SNR. The lower the input SNR, the more
the speech distortion.

The SPCC between and [as defined in (1)], which,
like the SNR, measures how noisy the observation signal, is

SNR
(19)

The SPCC between and [as defined in (2)], which
measures the amount of noise reduction, is

SNR
(20)

Property 5: We have

(21)

where

(22)

and

SNR
(23)

Property 6: We have

SNR
(24)

with equality when . The proof of this property fol-
lows immediately from (21). The SPCC measures the
amount of noise reduction.
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Property 7: We have

(25)

Property 8: We have

SNR
(26)

with equality when . The proof of this property follows
immediately from (25). The SPCC measures the
amount of noise reduction. The lower the value of ,
the more the noise reduction.

Property 9: We have

SNR (27)

We have discussed different forms of the SPCC and its prop-
erties. In the next section, we will show that the SPCC can be
used as a criterion to derive different optimal filters for noise
reduction. Many of the properties shown here are relevant and
will help us better understand the fundamental role of the SPCC
in the application of noise reduction.

V. EXAMPLES OF OPTIMAL FILTERS DERIVED FROM THE SPCC

Intuitively, the noise-reduction problem can be formulated
as one of finding the filter that maximizes the SPCC
in order to make the clean speech signal and the filter
output signal correlated as much as possible. Furthermore,
since the SPCC is the product of two other SPCCs

and (see Property 1), we can find
other forms of optimal filters that maximize either one of these
two SPCCs with or without constraints.

A. Speech Distortionless Filter

Speech distortion is always of great concern in noise reduc-
tion. Let us try to find an optimal filter that can pass the de-
sired speech signal without creating distortion. As explained in
Section IV, the SPCC is a speech-distortion index,
so the problem becomes one of finding a filter that maximizes

.
Let us assume that the covariance matrix is either full

rank or it is rank deficient but is not in its null space (if is
in the null space of , we have , which is
minimized instead of being maximized). We know that

(28)

where equality holds if and only if , and is a nonzero
(real) constant. Therefore, is the optimal speech-dis-
tortionless filter. In order to illustrate this solution, we consider
a simple example where we have a speech signal corrupted by
some noise recorded in a small office environment and we use a
filter with only two taps, i.e., , to obtain noise reduction.
The sampling rate is 16 kHz. The signal covariance matrix is
computed as

(29)

Fig. 1. The SPCC � (x;h x) versus a two-tap filter h = [h h ] .

Fig. 1 shows a three-dimensional plot of the SPCC
as a function of and . It is clearly seen that
reaches its maximum when ( can take any value but 0).

Note that the constant does not affect the noise-reduction
performance (it merely changes the volume of the output
signal). If we require the filtered and clean speech signals have
the same power (in other words, set ), the distortionless
filter becomes . In this case, we have

SNR SNR (30)

(31)

(32)

The degenerated filter has no impact on either the clean
speech or the noise. In other words, the speech-distortionless
filter will not distort the clean speech signal but will not
improve the output SNR either.

B. Maximum SNR Filter

The major objective of noise reduction is to reduce noise,
thereby improving the SNR. Now let us find a filter that can
maximize the output SNR. It is easy to see from (15) that max-
imizing the output SNR, SNR , is equivalent to maximizing

. It is easy to check that

(33)

In practice, the covariance matrices and are in general
full rank (which is assumed to be true in this study). Therefore,
maximizing is equivalent to solving the gener-
alized eigenvalue problem

(34)

The optimal solution to this problem is , where , again,
is a nonzero (real) constant, and is the eigenvector corre-
sponding to the maximum eigenvalue of .
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Fig. 2. The SPCC � (h x;h y) versus a two-tap filter h = [h h ] .

To illustrate the result, let us consider the same example as
used in Section V-A, where SNR dB, the filter length

, and the signal and noise covariance matrices are computed
respectively as

(35)

and

(36)

The corresponding generalized eigenvector is
. Fig. 2 plots the performance surface as

a function of and . It is seen that the SPCC
achieves its maximum when . As we mentioned earlier,
the constant does not affect the noise-reduction performance.
Let us choose , we have

SNR (37)

(38)

(39)

From this filter, we can deduce another interesting property of
the SPCC.

Property 10: We have

SNR
SNR

(40)

Since SNR SNR SNR, this implies that

(41)

which means that the filter yields less distortion to the
clean speech signal than to the noise signal .

Fig. 3. The SPCC � (x;h y) versus a two-tap filter h = [h h ] .

C. Wiener Filter

We are going to maximize the SPCC . Indeed, if
we differentiate this term with respect to and equate the result
to zero, we easily obtain

(42)

Depending on the rank of ( is supposed to be full rank),
we have at least two cases:
Case 1) is not full rank and is in the null space of .

In this situation, although satisfies the solution
of (42), we can easily check that ,
which is minimized instead of being maximized.

Case 2) is full rank or does not belong to the null space
of if is rank deficient. In this situation,
another possible solution to (42) is

(43)

To illustrate this result, we consider the same example used pre-
viously. The three-dimensional surface is shown in Fig. 3. Al-
though there are multiple filters that can maximize the SPCC

, they are only different by a constant factor and the
resulting noise-reduction performance is the same. Now let us
set , we obtain

(44)

which is the classical Wiener filter [31], [32].
From the above derivation, we see that the Wiener filter

is obtained by solving the equation
, which is equivalent to finding a filter that

satisfies the relation . With this relation, it
can be easily checked that . There-
fore, for the Wiener filter, we have the following properties.
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Property 11: Maximizing the SPCC is equiva-
lent to maximizing the variance, , of the filter output
signal, , subject to the constraint .

Property 12: We have

SNR
SNR

(45)

This implies that

SNR
SNR

(46)

However, using Properties 2 and 12, we deduce a better lower
bound:

SNR
SNR SNR

SNR
SNR

(47)

This lower bound shows that the amount of noise reduction
using the Wiener filter depends on the SNR. The lower the input
SNR, the more the noise is reduced. This is understandable since
a lower input SNR means that the observation signal is more
noisy, so there is more noise to attenuate.

Property 13: With the optimal Wiener filter given in (44), the
output SNR is always greater than or equal to the input SNR.

Proof: Let us evaluate the SPCC between and

(48)

Therefore

(49)

Using (11) and Property 2 in the previous expression, we get

SNR
SNR

SNR
SNR

(50)

Slightly reorganizing (50) gives

SNR SNR
(51)

which implies that

SNR SNR
(52)

As a result

SNR SNR (53)

That completes the proof.
Note that the relationship between the input and output SNRs

of the Wiener filter has been given in [31] and [33]. However,

the proof shown there is carried out in a transformed domain,
which is very complicated. In comparison, the proof shown here
is amazingly simpler and much easier to follow.

Property 14: We have

SNR
SNR SNR

SNR SNR

SNR
(54)

or

SNR

(55)

Proof: For the lower bound, see (47). The upper bound is
easy to show by using Property 12 and (49).

Property 15: We have

SNR

(56)

This expression shows the link between the speech-distortion
index, , and the SPCC . When
is high (resp. low), is small (resp. large) and, as a re-
sult, the clean speech signal is lowly (resp. highly) distorted. We
also have

SNR
SNR

SNR
SNR

(57)

so when the output SNR increases, the lower bound of the SPCC
decreases; as a consequence, the distortion of the

clean speech likely increases.
Link With the MMSE: Now we discuss the connection be-

tween maximizing the SPCC and minimizing the MSE. Define
the error signal between the clean speech sample and its esti-
mate at time :

(58)

The MSE is

SNR
SNR

(59)

We define the normalized MSE as

(60)



BENESTY et al.: ON THE IMPORTANCE OF THE PEARSON CORRELATION COEFFICIENT IN NOISE REDUCTION 763

The normalized minimum MSE (MMSE) is obtained by re-
placing the filter in (60) by the Wiener filter .

Property 16: We have

SNR (61)

Therefore, as expected, the MSE is minimized when the SPCC
is maximized.

Proof: Equation (61) can be easily verified by using
Properties 1 and 12, the relation ,
and (59).

Property 17: We have

SNR
SNR

SNR
SNR

(62)

or

SNR
(63)

Proof: These bounds can be proven by using the bounds of
and (61).

Property 18: We have

SNR
(64)

Proof: See [31].
Property 19: We have

SNR

SNR SNR
SNR SNR

(65)

or

(66)

Proof: These bounds can be proven by using Properties 14,
17, and 18.

Property 20: From the MSE perspective, with the Wiener
filter

SNR SNR (67)

Therefore, the measures and may be good
indicators of the behavior of the Wiener filter except for the case
where both the signal and noise are white random processes,
indicating that they are not self predictable. In this scenario, both
the signal and noise covariance matrices are diagonal, and we
have

SNR
SNR

(68)

SNR

SNR
(69)

SNR
(70)

SNR SNR (71)

This particular case shows a slight anomaly in the definitions (5)
and (6) since noise reduction and speech distortion are possible
while the output SNR is not improved at all. This is due to the
fact that

(72)

(73)

for a nonzero constant and .
Property 21: From the SPCC perspective, with the Wiener

filter

SNR SNR

(74)

When SNR SNR, then

(75)

(76)

This time, the measures based on the SPCCs
and reflect accurately the output SNR, since
when the latter is not improved the speech-distortion index

says that there is no speech distortion and the
noise-reduction index says that there is no
noise reduction indeed. The anomaly discussed above no longer
exists in the context of the SPCC thanks to the properties:

(77)

(78)

for a constant .
Properties 20 and 21 show basically that the noise-reduction

factor, , and the speech-distortion index, , de-
rived from the MSE formulation present a slight anomaly com-
pared to the equivalent measures based on the SPCCs and de-
rived from an SPCC criterion.

D. Tradeoff Filters

It is also possible to derive other optimal filters that can con-
trol the tradeoff between speech distortion and SNR improve-
ment. For example, it can be more attractive to find a filter that
minimizes the speech distortion while it guaranties a certain
level of SNR improvement. Mathematically, this optimization
problem can be written as follows:

subject to SNR SNR (79)

where . If we use a Lagrange multiplier, , to adjoin the
constraint to the cost function, (79) can be rewritten as

(80)

with

SNR (81)
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Taking the gradient of with respect to and equating
the result to zero, we get

(82)

Now let us look for the optimal filter, , that satisfies the
relation

(83)

In this case, (82) becomes

(84)

Left-multiplying both sides of (84) by , we can check that, in-
deed, the filter satisfies the relation (83). After some simple
manipulations on (84), we find that

SNR

SNR (85)

Define the quantities

(86)

(87)

SNR (88)

We find the optimal tradeoff filter

SNR SNR

(89)

which can be compared to the Wiener filter [31]

SNR
(90)

The purpose of the filter is the same as the filters derived
in [12], [16]. We can play with the parameters and to get
different forms of the tradeoff filter. For examples, for
we have the speech distortionless filter, , and for
and , we get the Wiener filter, .

Another example of a tradeoff filter can be derived by maxi-
mizing the output SNR while setting the speech distortion to a
certain level. Mathematically, this optimization problem can be
formulated as follows:

SNR subject to (91)

where . Following the same steps developed for the op-
timization problem of (79), it can be shown that the optimal
tradeoff filter derived from (91) is

SNR SNR

(92)
where

(93)

SNR
(94)

The two optimal tradeoff filters and are in the same
form even though the latter is rarely used in practice because
the level of speech distortion is very difficult to control.

VI. CONCLUSION

Traditionally, optimal noise-reduction filters are typically for-
mulated from the MSE criterion. With such a formulation, how-
ever, many important properties such as the SNR behavior of
the resulting optimal filters are masked. In this paper, we dis-
cussed the squared Pearson correlation coefficient (SPCC) and
showed that this coefficient has many appealing properties. Sim-
ilar to the MSE criterion, the SPCC can be used to derive op-
timal noise-reduction filters. For example, we illustrated how to
deduce the widely used Wiener filter and some other optimal
filters that have a better control on the tradeoff between noise
reduction and speech distortion. The major advantage of using
the SPCC as a cost function is that the noise-reduction perfor-
mance (in terms of SNR improvement and speech distortion) of
the resulting optimal filters can be easily analyzed. So, for the
problem of noise reduction, the SPCC-based criterion is a more
natural objective function to optimize as compared to the MSE.
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