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Transform Domain
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Abstract—Noise reduction for speech applications is often for-
mulated as a digital filtering problem, where the clean speech esti-
mate is obtained by passing the noisy speech through a linear filter/
transform. With such a formulation, the core issue of noise reduc-
tion becomes how to design an optimal filter (based on the statistics
of the speech and noise signals) that can significantly suppress noise
without introducing perceptually noticeable speech distortion. The
optimal filters can be designed either in the time or in a transform
domain. The advantage of working in a transform space is that,
if the transform is selected properly, the speech and noise signals
may be better separated in that space, thereby enabling better filter
estimation and noise reduction performance. Although many dif-
ferent transforms exist, most efforts in the field of noise reduction
have been focused only on the Fourier and Karhunen–Loève trans-
forms. Even with these two, no formal study has been carried out
to investigate which transform can outperform the other. In this
paper, we reformulate the noise reduction problem into a more
generalized transform domain. We will show some of the advan-
tages of working in this generalized domain, such as 1) different
transforms can be used to replace each other without any require-
ment to change the algorithm (optimal filter) formulation, and 2)
it is easier to fairly compare different transforms for their noise re-
duction performance. We will also address how to design different
optimal and suboptimal filters in such a generalized transform do-
main.

Index Terms—cosine transform, Fourier transform, Hadamard
transform, Karhunen–Loève expansion (KLE), noise reduction,
speech enhancement, tradeoff filter, Wiener filter.

I. INTRODUCTION

N OISE is ubiquitous in almost all acoustic environments. In
applications related to speech, sound recording, telecom-

munications, voice over IP (VoIP), teleconferencing, telecollab-
oration, and human–machine interfaces, the signal of interest
(usually speech) that is picked up by a microphone is generally
contaminated by noise originating from various sources. Such
contamination can dramatically change the characteristics of
the speech signals and degrade the speech quality and intelligi-
bility, thereby causing significant harm to human-to-human and
human-to-machine communication systems. In order to mitigate
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the detrimental effect of noise on speech processing and com-
munication, it is desirable to develop digital signal processing
techniques to “clean” the noisy speech before it is stored, trans-
mitted, or played out. This cleaning process, which is often re-
ferred to as noise reduction, has been a major challenge for many
researchers and engineers for more than four decades.

Generally speaking, noise is a term used to signify any
unwanted signal that interferes with the measurement and
processing of the desired speech signal. This broad-sense
definition, however, makes the problem too complicated to deal
with, and as a result, research is focused on coping with one
category of noise at once. In the area of speech processing,
we normally divide noise into four categories: additive noise
(from various ambient sound sources), interference (from
concurrent competing speakers), reverberation (caused by mul-
tipath propagation), and echo (resulting from coupling between
loudspeakers and microphones). Combating these four types
of noise has led to the developments of four broad classes of
acoustic signal processing techniques: noise reduction/speech
enhancement, source separation, speech dereverberation, and
echo cancellation/suppression. Now in the context of noise
reduction, the term noise is widely accepted as additive noise
that is statistically independent of the desired speech signal. In
this situation, the problem of noise reduction becomes one of
restoring the clean speech from the microphone signal, which
is basically a superposition of the clean speech and noise.

The complexity of this problem depends on many factors such
as the noise characteristics, the number of microphones, the per-
formance measure, etc. In a given noise condition and with a
specified performance measure, the problem is generally easier
as the number of microphones increases [1]–[5]. However, most
of today’s speech communication devices are equipped with
only one microphone. In such a situation, the estimation of the
clean speech has to be based on manipulation of the single mi-
crophone output. This has made noise reduction a very difficult
problem since no reference is accessible for the estimation of the
noise. Fortunately, speech and noise usually have very different
statistics. By taking advantage of this difference, we can design
some filter where the desired signal can pass through while the
additive noise can be attenuated. Note, however, that this fil-
tering process will inevitably modify the clean speech while re-
ducing the level of noise [6]. Therefore, the core problem in
noise reduction becomes one of how to design an optimal filter
that can significantly suppress noise without introducing per-
ceptually noticeable speech distortion.

The design of optimal noise reduction filters can be achieved
directly in the time domain by optimizing the expected value
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of some distortion measure using the clean and estimated sig-
nals. For example, the well known Wiener filter is obtained by
minimizing the mean-squared error (MSE) between the clean
speech and its estimate [5]–[8]. However, most developed noise
reduction approaches so far prefer to consider the optimal fil-
ters in a transform space. This is due to the fact that if the trans-
form is properly selected, the speech and noise signals can be
better separated in that space, making it easier to estimate the
noise statistics. A typical example is the well-studied subspace
method [9]–[15]. This approach projects the noisy signal vector
into a different domain either via the Karhunen–Loève (KL)
transform through eigenvalue decomposition of an estimate of
the correlation matrix of the noisy signal [9]–[14] or by using
the singular value decomposition of a data matrix constructed
from the noisy signal vector [15]. Once transformed, the speech
signal only spans a portion of the entire space, and as a result,
the entire vector space can be divided into two subspaces: the
signal-plus-noise and the noise only. The noise statistics can
then be estimated from the noise only subspace. These statis-
tics can subsequently be used to remove the noise subspace and
clean the signal-plus-noise subspace, thereby restoring the de-
sired clean speech. Another advantage of working in a transform
domain is that the noise reduction filter on each base space (or
subband) can be manipulated individually, which provides us
with more flexibility in controlling the compromise between the
amount of noise reduction and the degree of speech distortion.

Remarkably, there are many transforms that can be used;
however, we do not know which transform would be best suited
for the application of noise reduction. In the literature, most
efforts have been focused on the use of the Fourier and KL
transforms, but even with these two transforms, no formal study
has been carried out to investigate which one can outperform
the other (with the same experimental configuration). In this
paper, we attempt to provide a new framework that can be
used not only for deriving different noise reduction filters but
also for fairly comparing different transforms for their noise
reduction performance. Our major contributions include the
following. 1) We reformulate the noise reduction problem into
a more generalized transform domain, where any unitary (or
orthogonal) matrix can be used to serve as a transform. 2)
We address how to design different optimal and suboptimal
filters in the generalized transform domain. 3) We demonstrate
some advantages of working in the generalized transform
domain, such as: different transforms can be used to replace
each other without any requirement to change the algorithm
(optimal filter) formulation; and it is easier to fairly compare
different transforms for their noise reduction performance. 4)
We compare several popularly used transforms (including the
Fourier, KL, cosine, Hadamard, and identity transforms) for
their performance in noise reduction.

The rest of this paper is organized as follows. In Section II, we
briefly describe the signal model used in this paper. We then dis-
cuss the principle of noise reduction in the KL expansion (KLE)
domain in Section III. In Section IV, we present a new gener-
alized transform domain, where any given unitary (or orthog-

onal) matrix can be used to serve as the transform. Some per-
formance measures will then be provided in Section V. These
measures are critical for designing as well as evaluating noise
reduction filters. Detailed discussions on how to design dif-
ferent optimal and suboptimal filters will be given in Section VI.
In Section VII, we present some experimental results. Finally,
some conclusions will be drawn in Section VIII.

II. PROBLEM FORMULATION

The noise reduction problem considered in this paper is one
of recovering the signal of interest (clean speech or desired
signal) of zero-mean from the noisy observation (micro-
phone signal)

(1)

where is the discrete time index, and is the unwanted
additive noise, which is assumed to be a zero-mean random
process (white or colored) and uncorrelated with .

The signal model given in (1) can be written in a vector form
if we process the data on a per block basis with a block size of

(2)

where

Superscript denotes transpose of a vector or a matrix, and
and are defined similarly to . Since and are
uncorrelated, the correlation matrix of the noisy signal is equal
to the sum of the correlation matrices of the desired and noise
signals, i.e.,

(3)

where ,

and are, respectively, the correlation
matrices of the signals , and at time instant ,
with denoting mathematical expectation. Note that the
correlation matrices for nonstationary signals like speech are in
general time-varying, and hence a time index is used here, but
for convenience of presentation, in the rest of this paper, we will
drop the time index and assume that all signals are quasi-sta-
tionary.

Our objective in this paper is to estimate either or
from the observation vector , which is normally achieved
by applying a linear transformation to the microphone signal
[3], [5], [16], i.e.,

(4)

where is a filtering matrix of size is supposed
to be an estimate of , and and

are, respectively, the filtered speech and residual noise
after noise reduction. With this formulation, the noise reduction
problem becomes one of finding an optimal filter that would at-
tenuate the noise as much as possible while keeping the speech
from being dramatically distorted. One of the most used solu-
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tions to this is the classical Wiener filter derived from the MSE
criterion . This optimal filter
is [17], [18]

(5)

and most known filters, in the time and frequency (or other)
domains, are somehow related to this one as will be discussed
later on.

III. KARHUNEN–LOÈVE EXPANSION AND ITS DOMAIN

In this section, we briefly recall the basic principle of the
so-called Karhunen–Loève expansion (KLE) and show how we
can work in the KLE domain.

Let the vector denote a data sequence drawn from
a zero-mean stationary process with the correlation matrix .
This matrix can be diagonalized as follows [19]:

(6)

where

and

are, respectively, orthogonal and diagonal matrices. The
orthonormal vectors are the eigenvectors corre-
sponding, respectively, to the eigenvalues of the
matrix .

The vector can be written as a combination (expansion)
of the eigenvectors of the correlation matrix as follows
[20]:

(7)

where

(8)

are the coefficients of the expansion.
The representation of the random vector described by

(7) and (8) is the KLE [20], where (7) is the synthesis part and
(8) represents the analysis part.

It can be verified from (8) that

(9)

and

.
(10)

It can also be checked from (8) that the Parseval’s theorem
holds, i.e.,

(11)

where denotes the trace of a matrix.
Note that the extension of the KLE to nonstationary signals

like speech is straightforward.
One of the most important aspects of the KLE is its potential

to reduce the dimensionality of the vector . This idea has
been extensively investigated in the so-called subspace method
for noise reduction, where the signal of interest (speech) is as-
sumed to be low-rank, and noise reduction is achieved by di-
agonalizing the noisy covariance matrix, removing the noise
eigenvalues, and cleaning the signal-plus-noise eigenvalues [9],
[11]–[13], [15], [21], [22]. In the following, we will take an ap-
proach different from the subspace method. Instead of manip-
ulating the eigenvalues of the noisy correlation matrix, we will
work directly in the KLE domain and achieve noise reduction
by estimating the KLE coefficients of the clean speech in each
KLE subband. Indeed, substituting (2) into (8), we get

(12)

This expression is equivalent to (2) but in the KLE domain. We
also have

.
(13)

Therefore, the KLE coefficients of the noisy speech from one
subband (here the term subband refers to the signal component
along the base vector ) are uncorrelated with those from other
subbands, and as a result, we can estimate the KLE coefficients
of the clean speech in each subband independently without
considering the contribution from other subbands. Clearly,
our problem this time is to find an estimate of by
multiplying with a scalar filter , i.e.,

(14)

We see that

(15)

Finally, an estimate of the vector would be

(16)

where

(17)

is an (time-domain) filtering matrix which depends on
the orthogonal matrix and is equivalent to the KLE-domain
filter . Moreover, it is easy to check
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that the correlation matrix can be diago-
nalized as follows:

(18)

We see from the previous expression how the coefficients
, affect the spectrum of the estimated signal ,

depending on how they are optimized.

IV. GENERALIZATION OF THE KLE

In this section, we are going to generalize the principle of the
KLE to any given unitary transform . In order to do so, we
need to use some of the concepts presented in [23]–[26]. The
basic idea behind this generalization is to find other ways to ex-
actly diagonalize the correlation matrix . The Fourier ma-
trix, for example, diagonalizes approximately (since this
matrix is Toeplitz and its elements are usually absolutely sum-
mable [27]). However, this approximation may cause more dis-
tortion to the clean speech when noise reduction is performed
in the frequency domain.

We define the square root of the positive definite matrix
as

(19)

This definition is very useful in the derivation of a generalized
form of the KLE.

Consider the unitary matrix

where , superscript denotes transpose
conjugate of a vector or a matrix, and is the identity matrix. We
would like to minimize the positive quantity
subject to the constraint

(20)

Under this constraint, the process is passed through the
filter

with no distortion along and signals along other vectors than
tend to be attenuated. Mathematically, this is equivalent to

minimizing the following cost function:

(21)

where is a Lagrange multiplier. The minimization of (21)
leads to the following solution:

(22)

We define the spectrum of along as

(23)

Substituting (22) into (23) gives

(24)

Expression (24) is a general definition of the spectrum of the
signal , which depends on the unitary matrix . Using (22)
and (24), we get

(25)

By taking into account all vectors , (25) can
be written into the following general form

(26)

where

and

is a diagonal matrix.
Property 1: The correlation matrix can be diagonalized

as follows:

(27)

Proof: This form follows immediately from (26).
Property 1 shows that there are an infinite number of ways

to diagonalize the matrix , depending on how we choose
the unitary matrix . Each one of these diagonalizations gives
a representation of the spectrum of the signal in the sub-
space . Expression (27) is a generalization of the KLT; the
only major difference is that is not a unitary matrix ex-
cept for the case where . For this special case, it is easy
to verify that and , which is the KLT
formulation.

Property 2: The vector can be written as a
combination (expansion) of the vectors of the matrix

as follows:

(28)

where

(29)

are the coefficients of the expansion. The two previous expres-
sions are the time- and transform-domain representations of the
vector signal .
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Proof: Expressions (28) and (29) can be shown by substi-
tuting one into the other.

Property 3: We always have

(30)

and

(31)

where the superscript is the complex conjugate operator.
Proof: These properties can be verified from (29).

It can be checked that the Parseval’s theorem does not hold
anymore if . This is due to the fact that the matrix
is not unitary. Indeed

(32)

This is the main difference between the KLT and the general-
ization proposed here for . This difference, however,
should have no impact on the noise reduction applications and
Properties 1, 2, and 3 are certainly the most important ones.

We define the spectra of the clean speech and noise
in the subspace as

(33)

(34)

Of course, and are always positive real num-
bers.

We can now apply the three previous properties to our noise
reduction problem. Indeed, with the help of Property 2 and sub-
stituting (2) into (29), we get

(35)

We also have from Property 3 that

(36)

Expression (35) is equivalent to (2) but in the transform domain.
Similar to the KLE case, our problem becomes one of finding an
estimate of by multiplying with a (complex)
scalar filter , i.e.,

(37)

From Property 3, we have

.
(38)

Finally by using Property 2 again, we see that an estimate of the
vector would be

(39)

where

(40)

is an (time-domain) filtering matrix, which depends on
the unitary matrix and is equivalent to the transform-domain
filter . Moreover, it can be checked,
with the help of Property 1, that the correlation matrix

can be diagonalized as follows:

(41)

We see from the previous expression how the coefficients
, affect the spectrum of the estimated signal

in the subspace , depending on how they are optimized.

V. PERFORMANCE MEASURES

In this section, we present some very useful measures that
are necessary for designing properly the filters , or .
These definitions will also help us better understand how noise
reduction works in the transform domain.

The most important measure in noise reduction is the
signal-to-noise ratio (SNR). With the time-domain signal
model given in (1), the input SNR is defined as the ratio of
the intensity of the desired signal over the intensity of the
background noise, i.e.,

iSNR (42)

where and are the variances of
the signals and , respectively.

With the transform-domain model shown in (35), we define
the subband and fullband input SNRs, respectively, as

iSNR

(43)

iSNR (44)
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In general, iSNR iSNR, but for iSNR
iSNR.

After noise reduction with the (time-domain) model given in
(4), the output SNR can be written as

oSNR (45)

One of the most important objectives of noise reduction is to im-
prove the SNR after filtering [8], [6]. Therefore, we must design
a filter, , in such a way that oSNR . For example,
with the time-domain Wiener filter [given in (5)], , it was
shown that oSNR [8], [6], [18], [28],
[29].

After noise reduction with the model given in (39), the output
SNR is

oSNR (46)

Note that this definition is identical to (45). In (46), we only
make the output SNR dependent on the unitary matrix since
the filtering matrix depends on it.

With the transform-domain model shown in (37) and after
noise reduction, the subband output SNR is

oSNR

iSNR (47)

and the fullband output SNR is

oSNR (48)

In general, oSNR oSNR , but in the special
case where , we have oSNR oSNR .

Let and denote two positive real series, it can be shown
that

(49)

Using the above inequality, we can verify that

iSNR iSNR (50)

oSNR oSNR (51)

This means that the aggregation of the subband (input or output)
SNRs is greater than or equal to the fullband (input or output)
SNR.

Another important measure in noise reduction is the noise-re-
duction factor, which quantifies the amount of noise being at-
tenuated with the noise reduction filter. With the time-domain
formulation in (4), this factor is defined as [8], [6]

(52)

By analogy to the previous definition, we define the noise re-
duction-factor for the model in (39) as

(53)

The larger the value of , the more the noise is re-
duced. After the filtering operation, the residual noise level is
expected to be lower than that of the original noise level, there-
fore this factor should be lower bounded by 1.

In the transform domain with the formulation given in (37),
the subband noise-reduction factor can be defined as

(54)

and the corresponding fullband noise-reduction factor is

(55)

In general, , but for
.

The filtering operation adds distortion to the speech signal;
so a measure needs to be introduced to quantify the amount
of speech distortion. With the time-domain model in (4), the
speech-distortion index is defined as [8], [6]

(56)

With the model given in (39), we define the speech-distortion
index as

(57)

This index is lower bounded by 0 and expected to be upper
bounded by 1 for optimal filters. The higher the value of

, the more the speech is distorted.
Following the same line of ideas, in the transform domain

with the formulation given in (37), we define the subband and
fullband speech-distortion indices, respectively, as

(58)

and

(59)

In general, , but for the special case of
, .

We always have

(60)

(61)
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The two previous inequalities show that the fullband noise-re-
duction factor and speech-distortion index are upper bounded
by values independent of the spectra of the noise and desired
speech. It is also interesting to notice that the subband noise-re-
duction factor and speech-distortion index depend only explic-
itly on the scalars , but the corresponding
fullband variables depend also on the unitary matrix; this im-
plies that the choice of can affect noise reduction and speech
distortion.

Although there are many more measures available in the liter-
ature, the four measures (input and output SNRs, noise-reduc-
tion factor, and speech-distortion index) explained in this sec-
tion will be primarily used to study, evaluate, or derive optimal
or suboptimal filters for noise reduction in the following sec-
tions.

VI. EXAMPLES OF FILTER DESIGN

IN THE TRANSFORM DOMAIN

In this section, we are going to develop and study the most
important single-channel noise reduction filters in the transform
domain.

A. Wiener Filter

Let us define the transform-domain error signal between the
clean speech and its estimate as follows:

(62)

The transform-domain MSE is

(63)

Taking the gradient of with respect to and equating the
result to 0 leads to

(64)

Hence

(65)

The cross-spectrum on the right-hand side of (65) can be written
as

(66)

Therefore, the optimal filter can be put into the following forms:

(67)

We note that the optimal Wiener filter in the transform domain
is always real and positive and its form is similar to that of the
frequency-domain Wiener filter [4], [30].

Property 4: We have

(68)

where

(69)

and

(70)

are, respectively, the squared Pearson correlation coefficients
(SPCCs) between and , and and

.
Proof: From (69) and (70), we have

iSNR
iSNR

(71)

and

iSNR
(72)

Adding (71) and (72) together, we find (68).
Property 4 shows that the sum of the two SPCCs is always

constant and equal to 1. So if one increases the other decreases.
In comparison, the definition and properties of the SPCC in the
KLE domain are similar to those of the magnitude squared co-
herence function defined in the frequency domain.

Property 5: We have

(73)

(74)

These fundamental forms of the transform-domain Wiener filter,
although obvious, do not seem to be known in the literature.
They show that they are simply related to two SPCCs. Since

, then .
The Wiener filter acts like a gain function. When the level of
noise along is high , then

is close to 0 since there is a large amount of noise that
has to be removed. When the level of noise along is low

, then is close to 1 and is
not going to affect much the signal since there is little noise that
needs to be removed.
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We deduce the subband noise-reduction factor and speech-
distortion index

(75)

(76)

and the fullband noise-reduction factor and speech-distortion
index

(77)

(78)

The subband speech-distortion index and noise-reduction factor
are related by the formula

(79)

We see clearly how noise reduction and speech distortion
depend on the two SPCCs and

in the transform-domain Wiener
filter. When increases,
decreases; at the same time decreases
and so does .

Property 6: With the optimal transform-domain Wiener filter
, the (fullband) output SNR is always greater than or equal

to the (fullband) input SNR, i.e., oSNR iSNR .
Proof: Since and

, we always have

(80)

with equality if and only if is a con-
stant . Substituting into the
previous expression, we readily obtain

(81)

which means that

oSNR iSNR (82)

Property 6 is fundamental. It shows that the transform-do-
main Wiener filter is able to improve the (fullband) output SNR
of a noisy observed signal for any unitary matrix .

To finish this study, let us show how the time- and transform-
domain Wiener filters are related. With (40) and (67) we can
rewrite, equivalently, the transform-domain Wiener filter into
the time domain

(83)

where

(84)

is a diagonal matrix whose nonzero elements are the elements
of the diagonal of the matrix . Now if we
substitute (27) into (5), the time-domain Wiener filter [given in
(5)] can be written as

(85)

It is clearly seen that if the matrix is diag-
onal, the two filters and are identical. In this sce-
nario, it would not matter which unitary matrix we choose.

B. Parametric Wiener Filtering

Some applications may need aggressive noise reduction,
while others on the contrary may require little speech distortion
(so less aggressive noise reduction). An easy way to control the
compromise between noise reduction and speech distortion is
via the parametric Wiener filtering [31], [32]. The equivalent
approach in the transform domain is

(86)

where and are two positive parameters that allow the con-
trol of this compromise. For , we get the trans-
form-domain Wiener filter developed in the previous section.
Taking leads to

iSNR
iSNR

(87)

which is the equivalent form of the power subtraction method
studied in [31]–[35]. The pair gives the equiv-
alent form of the magnitude subtraction method [36]–[40]
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iSNR
(88)

We can verify that the subband noise-reduction factors for the
power and magnitude subtraction methods are

(89)

(90)

and the corresponding subband speech-distortion indices are

(91)

(92)

We can also show that

(93)

(94)

The two previous inequalities are very important from a prac-
tical point of view. They show that, among the three methods,
the magnitude subtraction is the most aggressive one as far as
noise reduction is concerned, a very well-known fact in the lit-
erature [30], but at the same time it’s the one that will likely
adds most distortion to the speech signal. The least aggressive
approach is the power subtraction while the Wiener filter is be-
tween the two others in terms of speech distortion and noise re-
duction. Since , then oSNR iSNR .
Therefore, all three methods improve the (fullband) output SNR.
Other variants of these algorithms can be found in [41], [42].

The two particular transform-domain filters derived above
can be rewritten, equivalently, into the time domain.

• Power subtraction:

(95)

• Magnitude subtraction:

(96)

These two filters are, of course, not optimal in any sense but they
can be very practical.

C. Tradeoff Filter

The error signal defined in (62) can be rewritten as follows:

(97)

where

(98)

is the speech distortion due to the linear transformation, and

(99)

represents the residual noise [9].
An important filter can be designed by minimizing the speech

distortion with the constraint that the residual noise is equal to
a positive threshold smaller than the level of the original noise.
This optimization problem can be translated mathematically as

subject to

(100)

where

(101)

(102)

and in order to have some noise reduction. Using
a Lagrange multiplier, , to adjoin the constraint to the
cost function, we can derive the optimal filter:

(103)

Hence, is a Wiener filter with adjustable input noise level
. It can be shown that this optimal filter is closely

related to the subspace approach [9], [14], [15], [43], [44]. Since
, then oSNR iSNR .

Therefore, this method improves the (fullband) output SNR.
The Lagrange multiplier must satisfy

(104)

Substituting (103) into (104), we can find

iSNR (105)

and from (104), we also have

(106)
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The Lagrange multiplier can always be chosen in an ad-hoc
way if we prefer. Then, we can see from (103) that there are four
cases.

• ; in this case, the tradeoff and Wiener filters are the
same, i.e., .

• ; in this circumstance, we have and there
will be no noise reduction and no speech distortion as well.

• ; this situation corresponds to a more aggressive
(as compared to the Wiener filter) noise reduction, at the
expense of higher speech distortion.

• ; this case corresponds to a more conservative noise
reduction (as compared to the Wiener filter) with less noise
reduction and also less speech distortion.

With (40) and (106) we can rewrite, equivalently, the trans-
form-domain tradeoff filter into the time domain:

(107)

D. Examples of Unitary Matrices

There are perhaps a very large number of unitary (or orthog-
onal) matrices that can be used in tandem with the different noise
reduction filters presented in this section, but does a transforma-
tion exist in such a way that an optimal filter maximizes noise
reduction while minimizing speech distortion at the same time?
The answer to this question is not straightforward. However, in-
tuitively we believe that some unitary matrices will be more ef-
fective than others for a given noise reduction filter.

The first obvious choice is the KLT developed in Section III.
In this case, where contains the eigenvectors of the
correlation matrix of the noisy signal for which the
spectral representation are the eigenvalues of . This choice
seems to be the most natural one since the Parseval’s theorem is
verified.

Another choice for is the Fourier matrix

(108)

where

(109)

and . Even though is uni-
tary, the matrix constructed from is not; as a result,
the Parseval’s theorem does not hold but the transform signals
at the different frequencies are uncorrelated. Filters in this new
Fourier domain will probably perform differently as compared
to the classical frequency-domain filters.

In our application, the signal is real and it may be more
convenient to select an orthogonal matrix instead of a unitary
one. So another choice close to the previous one is the discrete
cosine transform

(110)

where

(111)
with and for . We can verify
that .

One other important option is to take (the identity
matrix). The matrix derived from this choice is a kind of
an interpolation matrix [4] of the noisy signal and the spectrum

(112)

is the interpolation error power (with being the th column
of ). Therefore, if the signal is predictable along (meaning
that speech is dominant), will be small and should
be chosen close to 1. On the other hand, if the signal is not
predictable along (meaning that noise is dominant),
will be large and should be chosen close to 0.

Other possible choices for are Hadamard and Haar trans-
forms.

VII. SIMULATIONS

We have formulated the noise reduction problem in a gener-
alized transform domain and discussed the design of different
optimal and tradeoff noise reduction filters in that domain. In
this section, we study different filters through experiments and
compare different transforms and their impact on noise reduc-
tion performance.

The clean speech signal used in our experiments was recorded
from a female speaker in a quiet office environment. It was sam-
pled at 8 kHz. The overall length of the signal is 30 seconds. The
noisy speech is obtained by adding noise to the clean speech (the
noise signal is properly scaled to control the input SNR level).
We considered two types of noise: a computer generated white
Gaussian random process and a babbling noise signal recorded
in a New York Stock Exchange (NYSE) room. The NYSE noise
is also digitized with a sampling rate of 8 kHz. Compared with
the Gaussian random noise which is stationary and white, the
NYSE noise tends to be nonstationary and colored. It consists
of sounds from various sources such as electrical fans, telephone
rings, and even some speech from background speakers. See
[45] for some statistics of this babbling noise.

A. Estimation of the Correlation Matrices

The most critical information that we need to estimate are
the correlation matrices and . Since the noisy signal is
accessible, can be estimated from its definition in Section II
by approximating the mathematical expectation with the sample
average. However, due to the fact that speech is nonstationary,
the sample average has to be performed on a short-term basis
so that the estimated correlation matrix can follow the short-
term variations of the speech signal. Another widely used way
to estimate is through the recursive approach, where an
estimate of at time is obtained as

(113)
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where is a forgetting factor that controls the influence of
the previous data samples on the current estimate of the noisy
correlation matrix.

We have learned, through experimental study, that the short-
term average and the recursive methods can produce similar
noise reduction performance if the parameters associated with
each approach are properly optimized, but in general the recur-
sive approach given in (113) is easier to tune up. Therefore, this
method will be adopted in our experiments. In order to obtain an
initial estimate of , we separate the 30-s-long noisy signal
into two parts. The first part lasts 5 s and a long-term average is
applied to this to compute an initial estimate of . The second
part lasts 25 s and is used for performance evaluation.

The noise statistics can be estimated in many different ways
using a noise estimator [2], [6], [46]–[50]. In this study, how-
ever, we intend not to use any noise estimator, but compute the
noise correlation matrix directly from the noise signal using ei-
ther a long-term average (for stationary noise) or a recursive
method [similar to the estimation of in (113), but with a dif-
ferent forgetting factor ]. The reason for this is that we want to
study the optimal values of the parameters used in the different
noise reduction filters and the effect of different transforms on
noise reduction performance. To find the optimal values of those
parameters and the transform most suited for noise reduction, it
is better to simplify the experiments and avoid the influence due
to noise estimation error.

B. Performance of the Wiener Filter in Stationary Noise

With the recursive estimation of the correlation matrices, the
performance of the Wiener filter given in (83) is mainly affected
by three major elements: forgetting factors ( and ), frame
length , and transform matrix . In the first experiment, we
study the effect of the forgetting factors with different trans-
forms. White noise is used in this experiment and the input SNR
is 10 dB. Since this noise is stationary, we computed the noise
correlation matrix using a long-term average. We also fixed the
frame length to . With this setup, the noise reduction per-
formance is only affected by the transform matrix and the for-
getting factor . For the matrix , we choose to compare five
widely used transforms: KL, Fourier, cosine, Hadamard, and
identity. The value of should be in the range between 0 and 1.
Within this range, should not be too small, otherwise, a large
error would occur in the estimate, causing performance
degradation. In addition, a small may make the estimated

matrix ill-conditioned (with a large condition number),
thereby causing numerical problems when we attempt to com-
pute the inverse of this matrix. To circumvent this problem, we
computed the Moore-Penrose pseudoinverse of this matrix in-
stead of its direct inverse in our implementation. Of course,
cannot be set too large (close to its upper bound 1) either. Other-
wise, the recursive estimation will essentially be a long-term av-
erage and will not be able to follow the short-term variations of
the speech signal, which limits the noise reduction performance.
The optimal value will be determined through experiments.
Fig. 1 plots the output SNR and the speech-distortion index for
different transforms as a function of the forgetting factor [in
the evaluation, the noise reduction filter is directly applied to
the clean speech and the noise signal to obtain the

Fig. 1. Noise reduction performance of the Wiener filter versus � in white
Gaussian noise: iSNR � �� dB and � � ��.

filtered speech and residual noise , and the output
SNR and speech distortion index are then computed according
to (46) and (57), respectively].

It is seen from Fig. 1 that the output SNR for all the studied
transforms first increases with , and then decreases. The
highest output SNR is obtained when is between 0.985 and
0.995. This coincides with our intuition that has to be large
enough for accurate estimation of , but meanwhile it cannot
be too close to 1 so that the correlation estimate can follow
the variation of the speech signal. Unlike the output SNR, the
speech-distortion index for all the five transforms bears a
monotonic relationship with the parameter . The larger the
value of , the smaller the speech distortion index. This can be
explained by the following fact: as increases, the estimation
variation of the matrix decreases, thereby leading to less
speech distortion.

We also see from Fig. 1 that the Fourier and cosine trans-
forms yielded almost the same performance. When is rea-
sonably large (e.g., ), the KL, Fourier, and cosine trans-
forms produced similar output SNRs. Comparatively, however,
the KL transform has a much lower speech-distortion index. In
addition, the KL transform can improve the SNR while main-
taining a lower level of speech distortion even when is small
(e.g., ), but when is small, both the Fourier and cosine
transforms yielded negative SNR gain with tremendous speech
distortion. This result indicates that the KL transform is more
immune to the estimation error of . When the value of
is in a reasonable range (e.g., ), the Hadamard and
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Fig. 2. Noise reduction performance of the Wiener filter versus � in white
Gaussian noise: iSNR � �� dB and � � ����.

identity transforms can also improve the SNR, but their perfor-
mance is generally inferior to that of the other three transforms.

In the second experiment, we study the effect of the frame
length on the noise reduction performance. Same as the pre-
vious experiment, white noise is used and iSNR dB.
Again, the noise correlation matrix is computed using a long-
term average. Based on the previous results, we set .
Fig. 2 depicts the output SNR and speech-distortion index, both
as a function of . It is seen that, as increases, the output
SNR of the Wiener filter using the KL transform first increases,
and then decreases. Good performance with this transform is
obtained when is in the range of 20–40. This result agrees
with what we observed in our previous studies [6]. The reason
for this can be explained in terms of speech predictability. It is
widely known, from speech production and analysis theory, that
a speech signal can be well modeled with a low-rank predic-
tion (or generally an interpolation) model, which is especially
true for the quasi-steady voiced regions of speech in which a
prediction model of order 10–20 provides a good approxima-
tion to the vocal tract spectral envelope. During unvoiced and
transit regions of speech, the prediction model is less effective
than for voiced regions, but it still provides an acceptable model
for speech if the model order is increased. Usually, a prediction
model between 20–40 is sufficient to model a speech signal.
Therefore, we see that good performance is achieved when
is in that range. Further increasing does not improve mod-
eling accuracy, but leading to a larger error in the estimate,
which causes performance degradation.

Fig. 3. Noise reduction performance of the tradeoff filter versus � in white
Gaussian noise: iSNR � �� dB, � � ��, and � � �.

The Fourier and cosine transforms yielded similar perfor-
mance, particularly when . Both the output SNR and
speech-distortion index with these two transforms slightly in-
crease with (up to 160). For , these two transforms
even produced a higher output SNR than the KL transform with
the same value. However, the speech-distortion index with
these two transforms are also higher than that of the KL trans-
form. In addition, the largest SNR gain with these two trans-
forms (achieved when is around 160) is similar to that of the
KL transform achieved with a smaller .

While the output SNR of the identity transform is almost in-
variant with respect to , the speech-distortion index increases
significantly with . For the Hadamard transform, a larger
corresponds to a less SNR gain and a larger speech-distortion
index, which indicates that a small frame length should be
preferred if Hadamard transform is used. Generally, however,
both the identity and Hadamard transforms are much inferior to
the KL, Fourier, and cosine transforms in performance.

C. Performance of the Tradeoff Filter in Stationary Noise

In the next experiment, we evaluate the performance of the
transform-domain tradeoff filter given in (107) in different
conditions. From the analysis shown in Section VI-C, we
already see that if , the tradeoff filter is the Wiener filter.
Increasing the value of will give more noise reduction, but
will also lead to more speech distortion. In this experiment, we
set . Again, the noise used is a white Gaussian random
process and iSNR dB. The noise correlation matrix is



BENESTY et al.: NOISE REDUCTION ALGORITHMS IN A GENERALIZED TRANSFORM DOMAIN 1121

Fig. 4. Noise reduction performance of the tradeoff filter versus � in white
Gaussian noise: iSNR � �� dB, � � ����, and � � �.

computed using a long-term average. We first fix the frame
length to 32 and investigate the effect of and different
transforms on the performance. Fig. 3 portrays the output SNR
and speech-distortion index as a function .

Similar to the Wiener filter case, the output SNR (for all
the studied transforms) first increases and then drops as in-
creases. The largest SNR gain for each transform is obtained
when is between 0.985 and 0.995. The KL transform yielded
the best performance (with the highest output SNR and lowest
speech-distortion index). The Fourier and cosine transforms be-
have similarly. When is in the range between 0.93 and 1,
these two transforms can achieve an output SNR similar to that
of the KL transform, but their speech-distortion index is higher
than that of the KL transform. The identity and Hadamard trans-
forms produce similar output SNR, but the former has a much
higher speech-distortion index. In general, the performance of
these two transforms is relatively poor as compared to the other
three transforms, again, indicating that these two transforms are
less effective for the purpose of noise reduction.

Comparing Figs. 1 and 3, one can see that the output SNR of
the tradeoff filter is boosted with a large , but this is achieved
at the price of adding more speech distortion, which confirms
the analysis presented in Section VI-C.

To investigate the effect of the frame length on perfor-
mance, we set and change from 4 to 160. All other
conditions are the same as used in the previous experiment. The
results are shown in Fig. 4. Similar to the Wiener-filter case, we

Fig. 5. Noise reduction performance of the tradeoff filter versus � in NYSE
noise: iSNR � �� dB, � � ����, and � � ��.

observe that the output SNR for the KL transform first increases
to its maximum and then drops as increases. However, there
are two major differences as compared to the Wiener-filter case:
1) the near-optimal performance with the tradeoff filter appears
when is in the range of 40–120, while such performance oc-
curs when in the range of 20–40 for the Wiener filter; 2) al-
though the performance with the KL transform decreases if we
keep increasing after the optimal performance is achieved,
the performance degradation with is almost negligible. The
reason for these two differences can be explained as follows.
In our experiment, we set , and all the in the diag-
onal matrix that are less than 0 are forced
to 0. After a certain threshold, if we further increase , the di-
mension of the signal subspace that consists of all the positive

value does not increase much. In other words, even though
we increases , which results in a larger size for , we are
still dealing with a signal subspace of similar order. As a result,
the performance does not change much. Again, the Fourier and
cosine transforms have similar performance. Comparatively, the
effect of on the Fourier, cosine, Hadamard, and identity trans-
forms in the tradeoff-filter case is almost the same as that in the
Wiener-filter situation. The only difference is that now we have
achieved a higher SNR gain, but the speech distortion is also
higher.

D. Performance of the Tradeoff Filter in Nonstationary Noise

In the last experiment, we examine the tradeoff filter in the
NYSE noise conditions. Since this noise is nonstationary, the
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recursive method is used to estimate the noise correlation ma-
trix. From the previous study, we set , and
iSNR dB. The results of this experiment are depicted in
Fig. 5. For a clear presentation, we excluded the results using
the identity, Hardamard, cosine transforms since the former two
yielded much poorer performance, and the cosine transform de-
livered a performance similar to that of the Fourier transform.
It is seen that when is small (1 and 0.8), the KL and Fourier
transforms yielded a similar SNR gain, but when is increased
to 4, the KL transform achieves a higher output SNR. However,
the speech-distortion index with the Fourier transform is always
higher than that of the KL transform. In addition, for
and 0.8, the output SNR bears a nonmonotonic relationship with

, with the highest SNR is obtained when is approximately
0.993. It is also seen that when , a small is preferred.

VIII. CONCLUSION

This paper has focused on the noise reduction problem for
speech applications. We have formulated the problem as one of
optimal filtering in a generalized transform domain, where any
unitary (or orthogonal) matrix can be used to construct the for-
ward (for analysis) and inverse (for synthesis) transforms. We
have demonstrated some advantages of working in this gener-
alized domain, including different transforms can be used to
replace each other without any requirement to change the al-
gorithm (optimal filter) formulation, and it is easier to fairly
compare different transforms for their noise reduction perfor-
mance. We have addressed the design of different optimal and
suboptimal filters in such a generalized transform domain, in-
cluding the Wiener filter, the parametric Wiener filter, tradeoff
filter, etc. We have also compared, through experiments, five
different transforms (KL, Fourier, cosine, Hadamard, and iden-
tity) for their noise reduction performance. In general, the KL
transform yielded the best performance. The Fourier and cosine
transforms have quite similar performance, which is slightly in-
ferior to that of the KL transform. While Hadamard and identity
transforms can improve the SNR, their speech distortion is very
high as compared to the other three studied transforms.
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