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Abstract—Traditionally in the single-channel noise-reduction
problem, speech distortion is inevitable since the desired signal is
also filtered while filtering the noise. In fact, the more the noise is
reduced, the more the speech distortion is added into the desired
signal, as proved in the literature. So, if we require no speech
distortion, we either end up with no noise reduction at all or have
to use multiple sensors. In this paper, we attempt to apply the
widely linear (WL) estimation theory to noise reduction. Unlike
the traditional approaches that only filter the short-time Fourier
transform (STFT) of the noisy signal, the method developed in
this paper applies the noise-reduction filter to both the STFT
of the noisy signal and its conjugate. With the constraint of
no speech distortion, a WL distortionless filter is derived. We
show that this new optimal filter can fully take advantage of the
noncircularity property of speech signals to achieve up to 3-dB
signal-to-noise-ratio (SNR) improvement without introducing any
speech distortion, which can only be obtained with the traditional
approaches if two or more microphones are used.

Index Terms—Distortionless filter, noise reduction, noncircu-
larity, speech enhancement, widely linear filter.

I. INTRODUCTION

T YPICALLY, single-channel noise reduction is formulated
as a digital filtering problem. In such a formulation, the

core issue is to design an optimal filter that can fully exploit the
speech and noise statistics to achieve maximum noise suppres-
sion without introducing perceptually noticeable speech distor-
tion. While the optimal filters can be designed in the time do-
main, most widely used approaches so far work in the frequency
domain. When we work in the frequency domain, we gener-
ally deal with complex random variables even though the orig-
inal time-domain signals are real in the context of speech ap-
plications. For a zero-mean complex random variable (CRV),
there are two basic types of second-order statistics depending
on whether the random variable is circular or noncircular.

A CRV is said to be circular if its probability density func-
tion (PDF) is the same as the PDF of [1]–[3], where and

are the imaginary unit and any real number, re-
spectively. This is equivalent to saying that the PDF of a circular
CRV (CCRV) is a function of the product only [1], where
denotes complex conjugation. An important consequence of this
is that the only nonnull moments and cumulants of a CCRV are
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the moments and cumulants constructed with the same power
of and [1]. Now let us confine our discussion and study
to the second-order issues. With the general definition of circu-
larity, we can readily define the second-order circularity: a zero-
mean complex random variable is said to be second-order cir-
cular if its pseudo-variance is equal to zero, i.e., ,
where denotes mathematical expectation and

. This indicates that the second-order behavior of
a CCRV is well described by its variance. Note that the Fourier
components of stationary signals are CCRVs [4].

However, the STFT coefficients of a nonstationary signal like
speech are not circular variables, as shown in [5], [6]. So a crit-
ical question one may ask is how to apply the speech noncircu-
larity to the noise-reduction problem. In [5], [6] we developed a
widely linear (WL) Wiener filter and demonstrated that the WL
Wiener filter is superior to the classical Wiener filter for noise
reduction. In this paper, we attempt to develop a distortionless
filter. We show that this new single-channel optimal filter can
achieve up to 3-dB SNR improvement without introducing any
speech distortion, which can only be accomplished with the tra-
ditional techniques if two or more microphones are used.

II. PROBLEM FORMULATION

The noise-reduction problem considered in this paper is one
of recovering the nonstationary desired signal (clean speech)

, being the discrete-time index, of zero mean from the
noisy observation (microphone signal):

(1)

where is the unwanted additive noise, which is assumed to
be a zero-mean random process (white or colored, stationary or
not) and uncorrelated with . In the STFT domain, (1) can
be rewritten as

(2)

where , , and are respectively the
STFTs of , , and , at time-frame and fre-
quency-bin (with ).

Using the fact that and are assumed to be uncorre-
lated, we can write the variance of the noisy spectral coefficients
as

(3)

where

(4)

is the variance of ; is the STFT coefficients
of the signal at time-frame and frequency-bin , and

.
With the signal model given in (2), the noise-reduction

problem becomes one of estimating given .
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In the traditional approaches, an estimate of is ob-
tained by applying a filter to . In this paper, we consider
estimating using the WL estimation technique [7] by
assuming that is complex1:

(5)

where is the STFT of the signal [which is an esti-
mate of ], and are two complex gains,
superscript denotes transpose conjugate, and

If for any and , (5) degenerates to the clas-
sical linear estimation theory . This, however, will not happen
in general for noncircular CRVs.

The clean signal estimate obtained using (5) consists of con-
tributions from both the desired signal and the unwanted noise.
To clearly view this, let us decompose the signal into
the following form:

(6)

where is the filtered version
of the desired signal and its complex conjugate [where

is defined in a similar way to ], and
is the residual noise, which is

apparently uncorrelated with .
From (6), we deduce the variance of the spectral coefficients

of the signal at time-frame and frequency-bin :

(7)

where

(8)

(9)

and

(10)

is the covariance matrix of
with

(11)

1If � ����� is real, the WL estimator is the same as that using the classical
techniques, which has already been covered in the rich literature.

being the (second-order) circularity quotient [8], and
being the circularity matrix. It can easily be shown that [8]

(12)

The circularity coefficient conveys information
about the degree of circularity of the signal . In partic-
ular, if is a (second-order) CCRV then
and , where

(13)

is the 2 2 identity matrix.
The signal consists of components from both the

desired signal and its conjugate. But not all these
components are what we want (this is different from the clas-
sical linear filtering problem). It is, therefore, necessary and
important to distinguish between the filtered desired signal and
the residual interference that both may exist in at
the same time. Specifically, is part of the
overall filtered desired signal, but is not.
If for any and , and
are uncorrelated and the overall filtered desired signal is in-
deed . But for , is
correlated with and contains both the desired signal
and an interference component. Following the idea developed
in [5], [9], we can decompose into two orthogonal
components:

(14)

where

(15)

(16)

and

(17)

We can then rewrite (6) as

(18)

where

(19a)

(19b)

(19c)

are the overall filtered desired signal, the residual interference,
and the residual additive noise, respectively. Note that the above
decomposition of the signal is critical in order to
properly design the optimal WL noise-reduction filters.

The three terms on the right-hand side of (18) are mutually
uncorrelated. Therefore, we have

(20)
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where

(21)

(22)

and is defined in (9).
Now, we define the subband error signal between the esti-

mated and desired signals as

(23)

which can be written as the sum of two error signals:

(24)

where

(25)

is the signal distortion due to the complex filter and

(26)

represents the residual interference and noise.
The subband mean-squared error (MSE) is then

(27)

where

(28)

and

(29)

It is clear that the objective of noise reduction in the frequency
domain is to find optimal gains and at each
time-frame and frequency-bin that would either directly

minimize or minimize or
subject to some constraint.

III. WIDELY LINEAR DISTORTIONLESS FILTER

Having defined the subband MSE, we are now ready to
derive noise-reduction filters. As a matter of fact, minimizing

with respect to leads to the WL Wiener
filter, which was shown to outperform the classical Wiener filter
for noise reduction [5]. However, like the classical approaches
where noise reduction is achieved always by adding distortion
to the desired signal, the WL Wiener filter also introduces some
speech distortion. In this section, we show that it is possible
to derive a WL distortionless filter whose noise-reduction
performance depends exclusively on the noncircularities of the
desired and noise signals.

From (25), we see that the constraint to avoid any distortion
on the desired signal is

(30)

Therefore, minimizing the MSE, , subject to the
constraint (30) would lead to a WL distortionless noise-re-
duction filter. This is also equivalent to finding a filter that
minimizes subject to the constraint (30), i.e.,
see (31) at the bottom of the page. If we use a Lagrange
multiplier to adjoin the constraint to the cost function and then
equating the derivative of the cost function with respect to

to zero, we readily derive the WL distortionless filter:

(32a)

(32b)

(32c)

where

(33)
is the covariance matrix of the interference plus noise. If
the desired and noise signals are circular, i.e.,

, we get , which is the classical
distortionless filter; this particular filter does not, of course,
distort the desired signal but it does not reduce the noise either.
However, when the desired and noise signals are not circular,
their noncircularity can help achieve noise reduction without
adding speech distortion. To verify this, we give the following
property.

(31)
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Property: With the WL distortionless filter given in (32), the
subband output SNR is always greater than or equal to the sub-
band input SNR, i.e.,

.
Proof: Indeed, the subband output SNR is shown in

(34) at the bottom of the page. With some simple math-
ematical manipulation on the inverse of the 2 2 matrix

, we easily find the SNR gain, which is shown in
(35) at the bottom of the page, with equality if and only if

(i.e., circular signals). It follows
immediately that .

If noise is stationary, which is often assumed to be the case
in practical situations, one can see that the SNR gain
would only depend on the input SNR, i.e., , and the
speech noncircularity parameter . Fig. 1 plots the
SNR gain as a function of and . One
can see that up to 3-dB SNR improvement can be achieved if the
desired signal is noncircular and the input SNR is relatively low.
It is quite remarkable that it is possible to design a distortion-
less filter that fully exploits the noncircularities of the signals to
improve the subband SNR (even though the amount of the SNR
improvement may not be significant), while the traditional tech-
niques have no effect on the subband SNR, i.e.,
is always equal to . With the new WL distortionless
filter, if we want to achieve more than 3-dB SNR gain, this can
be obtained by filtering cross-frame spectra, which is currently
under investigation.

Many simulations with speech signals have shown, at this
point of time, that we can get up to 1-dB improvement in SNR
without adding distortion to the desired signal. However, be-
cause of space limitation the results are not presented here.

IV. CONCLUSIONS

The traditional single-channel noise-reduction techniques
achieve noise reduction by paying a price of speech distortion;
and the more the noise is reduced, the more the speech distor-
tion is added into the desired signal. So, with the traditional
techniques, if we require no speech distortion, we would end
up with no noise reduction. In this paper, we developed a WL
distortionless filter for single-channel noise reduction based on
the WL estimation theory. We showed that this new optimal
filter can fully take advantage of the noncircularity property of
the speech and noise signals to achieve noise reduction without
introducing any speech distortion. If noise is stationary, the WL
distortionless filter can achieve up to 3-dB SNR improvement,

Fig. 1. Theoretical SNR gain of the WL distortionless filter as a function of
�� ������ and ���������.

which would need two or more microphones to obtain with the
classical linear estimation theory.
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