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Abstract—Noise statistics estimation is a paramount issue in the
design of reliable noise-reduction algorithms. Although significant
efforts have been devoted to this problem in the literature, most
developed methods so far have focused on the single-channel case.
‘When multiple microphones are used, it is important that the data
from all the sensors are optimally combined to achieve judicious
updates of the noise statistics and the noise-reduction filter. This
contribution is devoted to the development of a practical approach
to multichannel noise tracking and reduction. We combine the
multichannel speech presence probability (MC-SPP) that we pro-
posed in an earlier contribution with an alternative formulation
of the minima-controlled recursive averaging (MCRA) technique
that we generalize from the single-channel to the multichannel
case. To demonstrate the effectiveness of the proposed MC-SPP
and multichannel noise estimator, we integrate them into three
variants of the multichannel noise reduction Wiener filter. Exper-
imental results show the advantages of the proposed solution.

Index Terms—Microphone array, minima controlled recursive
averaging (MCRA), multichannel noise reduction, multichannel
speech presence probability (MC-SPP), noise estimation.

1. INTRODUCTION

PEECH signals are inherently sparse in the time and fre-
S quency domains, thereby allowing for continuous tracking
and reduction of background noise in speech acquisition sys-
tems. Indeed, spotting time instants and frequency bins without/
with active speech components is extremely important to up-
date/hold the noise statistics that are needed in the design of
noise-reduction filters. When multiple microphones are utilized,
the extra space dimension has to be optimally exploited for this
purpose.

In general terms, noise reduction methods can be classified
into two main categories. The first focuses on the utilization
of a single microphone while the second deals with multiple
microphones. Both categories have emerged and, in many cases,
continued to be treated as separate fields. However, the latter
can be viewed as a generalized case of the former and similar
principles can be used for both the single and multichannel noise
tracking and reduction.
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Single-channel noise reduction has been an active field of
research over the last four decades after the pioneering work
of Schroeder in 1965 [1]. In this category, both spectral and
temporal information are commonly utilized to extract the
desired speech and attenuate the background additive noise
[2]-[7]. In spite of the differences among them, most of the
existing single-channel methods, essentially, find their common
root in the seminal work of Norbert Wiener in 1949 [8] as
shown in [9], for example. To implement these filters, noise
statistics are required and have to be continuously estimated
from the observed data [2], [10]-[13]. The accuracy of these
estimates is a crucial factor since noise overestimation can
lead to the cancellation of the desired speech signal while its
underestimation may result in larger annoying residual noise.
To deal with this issue, Martin proposed a minimum statis-
tics-based method that tracks the spectral minima of the noisy
data per frequency bin [10]. These minima were considered as
rough estimates of the noise power spectral density (PSD) that
were refined later on by proper PSD smoothing [11]. In [14],
Cohen proposed the so-called MCRA in which the smoothing
factor of the first-order recursive averaging of the noise PSD
is shown to depend directly on the speech presence probability
(SPP). Then, the principle of minimum statistics tracking was
exploited to determine this probability. In [12], a Gaussian
statistical model was assumed for the observation data and the
SPP was accordingly devised. In this formulation the a priori
speech absence probability (SAP) is estimated by tracking the
minimum values of the recursively smoothed periodogram of
the noisy data.

Multichannel noise reduction approaches were, on the other
hand, greatly influenced by the traditional theory of beam-
forming that dates back to the mid twentieth century and was
initially developed for sonar and radar applications [15]-[17].
In fact, a common trend in multichannel noise reduction has
been to formulate this problem in the frequency domain for
many reasons such as efficiency, simplicity, and ease to tune
performance. Then, noise reduction (and even dereverberation)
is achieved if the source propagation vector is known. In ane-
choic situations where the speech components observed at each
microphone are purely delayed and attenuated copies of the
source signal, beamforming techniques yield reasonably good
noise-reduction performance. In most acoustic environments,
however, the reverberation is inevitable and generalized transfer
functions (TFs) are used to model the complex propagation
process of speech signals. One way to reduce the acoustic noise
in this case consists in using the MVDR or the generalized
sidelobe canceller (GSC) whose coefficients are computed
based on the acoustic channel TFs. Nevertheless, the channel
TFs are unknown in practice and have to be estimated in a blind
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manner, which is a very challenging issue. Some of the promi-
nent contributions that were developed for multichannel speech
enhancement include [18], where the generalized channel TFs
were first utilized and assumed to be known in order to develop
an adaptive filter that trades off signal distortion and noise
reduction. In [19], Affes and Grenier proposed an adaptive
channel TF-based GSC that tracks the signal subspace to
jointly reduce the noise and the reverberation. In [20], Gannot
et al. focused on noise reduction only using the GSC that
was shown to depend on the channel TF ratios which can be
estimated using the speech nonstationarity [21].

In [22], the MVDR (consequently the GSC), in particular, and
parameterized multichannel Wiener filter (PMWF), in general,
were formulated such that they only depend on the noise and
noisy data PSD matrices when only noise reduction is of in-
terest. This formulation can be viewed as a natural extension of
noise reduction from the single to the multichannel case and
what one actually needs to implement these filters are accu-
rate estimates of the noise and noisy data PSD matrices. Fol-
lowing the single-channel noise reduction legacy, it seems nat-
ural to also generalize the concepts of SPP estimation and noise
tracking to the multichannel case in order to implement the mul-
tichannel noise reduction filters. Recently, the MC-SPP has been
theoretically formulated and its advantages were discussed in
[23]. In this paper, we first propose a practical implementation
of the MC-SPP. An estimator of the a priori SAP is developed
by taking into account the short and long term variations of some
properly defined SNR measure. Also, an online estimator of the
noise PSD matrix which generalizes the MCRA to the mul-
tichannel case is provided. Similar to the single-channel sce-
nario, we show how the noise estimation is performed during
speech absence only. After investigating the accuracy of the
speech detection when multiple microphones are utilized, we
combine the multichannel noise estimator with three noise re-
duction methods, namely, the MVDR, Wiener, and a new mod-
ified Wiener filter. The overall proposed scheme performs very
well in various conditions: stationary or nonstationary noise in
anechoic or reverberant acoustic rooms.

The remainder of this paper is organized as follows. Section II
describes the signal model. Section III reviews the properties of
the MC-SPP that was developed in [23]. Section IV outlines the
practical considerations that have to be taken into account to im-
plement the MC-SPP. It also contains a thorough description of
the proposed a priori SAP estimator and the overall algorithm
for noise estimation and tracking. Section V presents several nu-
merical examples to illustrate the effectiveness of the proposed
approach for speech detection and noise reduction.

II. PROBLEM STATEMENT

Let s(t) denote a speech signal impinging on an array of N
microphones with an arbitrary geometry at time instant ¢. The
resulting observations are given by

=gn(t) x s(t) + v, (t)
:xn(t)'i_'vn(f) ’I’L:1,2,N (L

Yn(t)

where * is the convolution operator, g, (t) is the channel im-

pulse response encountered by the source before impinging on
the nth microphone, x,,(t) = g,(t) * s(t) is the noise-free
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(clean) speech component, and v,, (¢) is the noise at microphone
n which can be either white or colored but is uncorrelated with
s(t). We assume that all the noise components and s(t) are
zero-mean random processes. In the short-time Fourier trans-
form (STFT) domain, the signal model (1) is written as

Yo(k,l) = Xn(k, 1) + Va(k,0), n=1,2,...,N 2

where £ = 0,...,K — 1 is the frequency index (K is
the STFT length) and [ is the time-frame index. With this
model, the objective of noise reduction is to estimate one
of the N clean speech spectra X, (k,l), n = 1,2,...,N.
Without loss of generality, we choose to estimate X;(k,[).
To formulate the algorithm, we use the following vector
notation. First, we define g(k) 2 [Gi(k) --- Gn(k)]"
which consists of the TFs of the propagation channels be-
tween the source and all microphone locations, y(k,!) £
Yi(k,0) - Ya(k, D], x(k, 1) & [Xy (k1) -+ Xn(k, D],
and v(k,1) & [Vi(k,1) --- Vn(k,)]". The noise and noisy
data PSD matrices are ®,,(k) = E{v(k,l)v#(k,1)} and
®,,(k) = E{y(k )y (k1)}, respectively. Since noise
and speech components are assumed to be uncorrelated, we
can calculate the PSD matrix of the noise-free signals as
®,.(k) £ E{x(k,D)x"(k1)} = ®,,(k) — ®,,(k). In
practice, recursive smoothing is used to approximate the math-
ematical expectations involved in the previous PSD matrices.
In other words, at time frame [, the estimates of the noise and
noisy data statistics are updated recursively [we use the notation
(%) to denote “the estimate of”’]

A

ny(k/’?l) R

= Oéy(k‘, l)q)!/y(kl - 1) + [1 - O‘y(k»l)] Y(kvl)yH(kvl) (3)
and

®,, (k1)

= Gy (k, )@, (k1 = 1) + [1 = @y (k, D]y (k, Dy (k1) &)

where 0 < au(k,l) < land 0 < @&,(k,l) < 1 are two
forgetting factors. The choice of these two parameters is very
important in order to correctly update the noisy and noise data
PSD matrices. Without loss of generality, we will assume that
ay(k,l) = «, is constant in the following. As for &, (k,1),
it should be small enough when the speech is absent so that
®,,(k,l) can follow the noise changes, but when the speech
is present, this parameter should be sufficiently large to avoid
noise PSD matrix overestimation and speech cancellation.
Clearly, the parameter &, (k,[) is closely related to the detec-
tion of speech presence/absence. In the following, we propose
a practical approach for the computation of the MC-SPP and
ay (k).

III. MULTICHANNEL SPEECH PRESENCE PROBABILITY

The SPP in the single-channel case has been exhaustively
studied [12], [24], [25]. In the multichannel case, the two-state
model of speech presence/absence, as in the single-channel
case, holds and we have

1) Ho(k,1): in which case the speech is absent, i.e.,

y(k,1) = v(k,1). ()
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2) Hi(k,l): in which case the speech is present, i.e.,

y(k,1)

A first attempt to generalize the concept of SPP to the multi-
channel case was made in [26] where some restrictive assump-
tions (uniform linear microphone array, anechoic propagation
environment, additive white Gaussian noise) were made to de-
velop an MC-SPP. Recently, we have generalized this study and
shown that this probability is in the following form [23]

= x(k, 1) + v(k,1). ©6)

[y _atk) o |- BED N
p(k’l)_{” gk, 7y R D] exp { 1+s(k71)}} o
where
Ek 1) 2 b [ ()0 (R, 1)] ®)

&(k,1) can be identified as the multichannel a priori SNR [23]
and is also the theoretical output SNR of the PMWF [22]. More-
over, we have

Bk, 1) & 37 (k, D@, (k, ) (k, )@, (k. Dy (k1) )
and ¢(k,!) is the a priori SAP. The result in (7)—(9) describes
how the multiple microphones’ observations can be combined
in order to achieve optimal speech detection. It can be viewed
as a straightforward generalization of the single-channel SPP to
the multichannel case under the assumption of Gaussian statis-
tical model. In comparison with its single-channel counterpart,
this MC-SPP has many advantages as shown in [23]. Indeed,
perfect detection is possible when the noise emanates from a
point source, while a coherent summation of the speech compo-
nents is performed in order to enhance the detection accuracy if
the noise is spatially white. It is important to point out that the
MC-SPP in (7)-(9) involves only the noise and noisy signal PSD
matrices in addition to the current (at time instant /) data sam-
ples. This feature makes it appealing in the sense that it can be
combined with recursive statistics estimation to track the speech
absence/presence and, correspondingly, continue/halt the noise
statistics update.

IV. PRACTICAL CONSIDERATIONS AND NOISE TRACKING

In order to compute the MC-SPP in (7)—(9), we have to es-
timate q(k,1), £(k,1), @y (k, 1), and @,.,.(k,[) as described in
the following section. We denote the estimates of these terms as
G(k, 1), (K, 1), @y (k, 1), and @, (k, 1), respectively.

A. Estimation of the a Priori Speech Absence Probability

It is clear from (7) that the a priori SAP, q(k,l), needs to
be estimated. In single-channel approaches, this probability is
often set to a fixed value [25], [27]. However, speech signals
are inherently nonstationary. Hence, choosing a time- and fre-
quency-dependent a priori SAP can lead to more accurate de-
tectors. Notable contributions that have recently been proposed
include [13], where the a priori SAP is estimated using a soft
decision approach that takes advantage of the correlation of the
speech presence in neighboring frequency bins of consecutive
frames. In [12], a single-channel estimator of the a priori SAP
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which is based on minimum statistics tracking was proposed.
The method is inspired from [11], but further uses time and fre-
quency smoothing.

In contrast to previous contributions, we propose to use
multiple observations captured by an array of microphones
to achieve more accuracy in estimating the a priori SAP.
Theoretically, any of the aforementioned principles (fixed SAP,
minimum-statistics, or correlation of the speech presence in
neighboring frequency bins of consecutive frames) can be
extended to the multichannel case. Without loss of generality,
we consider a framework that is similar to the one proposed in
[13] and use both long-term and instantaneous variations of the
overall observations’ energy (with respect to the best estimate
of the noise energy). Our method is based on the multivariate
statistical analysis [28] and jointly processes the N microphone
observations for optimal a priori SAP estimation.

We define the following two terms:

wwﬁi%mﬁ*wwwn
Bk, 1) 2tr [<I> (k, 1)y, (k, 1)}

(10)
(1)

Both terms will be used for a priori SAP estimation. Indeed,
note first that in the particular case N = 1, 9(k,[) boils down
to the ratio of the noisy data energy divided by the energy of the
noise (known as a posteriori SNR [11]-[13]). Besides, (k1)
is nothing but the instantaneous version of ¢ (k,[). We have
¥(k,1) > N and large values of ¢(k, ) and 1 (k, !) would indi-
cate the speech presence, while small values (close to V) indi-
cate speech absence. Actually, by analogy to the single channel-
case, ¥(k,!) and ¥ (k,[) can be identified as the instantaneous
and long-term estimates of the multichannel a posteriori SNR,
respectively. Consequently, considering both terms in (10) and
(11) to have a prior estimate of the SAP amounts to assessing
the instantaneous and long-term averaged observations’ ener-
gies compared to the best available noise statistics estimates and
deciding whether the speech is a priori absent or present as in
[13].

Now, we see from the definitions in (10) and (11) that in order
to control the false alarm rate, two thresholds v and )¢ have
to be chosen such that

Prob [ (k, 1) > volHo(k,1)] < e
Prob [1(k, 1) > ol Ho(k,1)| <e

where € denotes a certain significance level that we choose as
€ = 0.01 [13]. In theory, the distributions of +)(k, [) and ¢ (k, )
are required to determine vy and v)y. In practice, it is very diffi-
cult to determine the two probability density functions. To cir-
cumvent this problem, we make the following two assumptions
for noise only frames.

* Assumption I: the vectors y(k,[) are Gaussian, indepen-
dent, and identically distributed with mean O and covari-
ance ®,,(k,1).

» Assumption 2: the noise PSD matrix can be approximated
as a sample average of L periodograms (we further assume
that these periodograms are independent for ease of anal-
ysis), i.e.,

(12)

m) k l (13)

h |

EL: H (k. ;)
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where /; is a certain time index of a speech-free frame pre-

ceding the /th one. Following this assumption, ®,,,(k,!)

has a complex Wishart distribution Wy (@4, (k,1), L) [

in the following, we will use the notation ®,,,(k,l) ~
Using Assumption 1 and Assumption 2, we find that ¢ (k, ) has
a Hotelling’s T2 distribution with probability density function
(pdf) and cumulative distribution function (cdf), respectively,
expressed as [28]

_ T+ le
N LF(L)
Fol@) = (Z) T(N+1)I(L-N+1)
B (N7L+1;N—|—1;—%> () (15)

where 2 Fy (-, ;+;-) is the hypergeometric function [28], [29],
and u(x) = 1 if z > 1 and O otherwise.

Now, we turn to the estimation of g[}o To this end, we use
Assumption 1 and further suppose that, similar to <I>m;(k 0),
<I>yy(k, l) can be approximated by a sample average of L pe-
riodograms. In order to determine the pdf of lZ(k [), we use the
fact that for two independent random d X d—dimensional ma-
trices H ~ Wy (X, myg) and E ~ Wy(X, mg), the distribution
of tr {HE_l} can be approximated by cF' where F' ~ F, 3 (F
distribution with a and b degrees of freedom) where [28], [30]

a+2 a(b—2)
= :4 =
a=dmg, =4+ o = T
(mE+mH—d—1)(mE—1)

(mp —d— 3)(mg — d)

B =

Specifically, the pdf and cdf corresponding to F, ; are [28]

(am)“b”
(az+b)e+?

zB (27 2)
a b
.7"{2}(1’) :Ia:r/(az—i-b) <§7 5) U(iﬂ)

file) = u(x) (16)

a7

This approximation is valid for real matrices and we found that
it gives good results in all the investigated scenarios for 1/1(k l)
[i.e., replacing H and E by ny(k/l) and ®,,(k, 1), respec-
tlvely] by choosing mg = my = L and d = 2N. Note again
that we are assuming that ®,,,(k, ) and ®,,(k, ) have the same
mean since we are considering noise only frames.

Once we determine ¥, and vy using (12) jointly with (15)
and (17), we have to take into account the variations of both
¥ (k,1) and 1 (k, 1) in order to devise an accurate estimator of the
a priori SAP. Hence, we propose a procedure which is inspired
from the work of Cohen in [12], [13]. We first propose the fol-
lowing three estimators: Giocal(k, 1), dglobal(k, 1), and Gerame(!)
which are described in the following.
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For a given frequency bin, we estimate the local (at frequency
bin k) a priori SAP as [13]

(jlocal(kvl)
1, if (k1) < N and 9(k, 1) < tho

= %@’y) it N <op(k,1)<tho and (k1) <t (18)
-

else.

?

When v (k, 1) and ) (k, ) are sufficiently large, it is assumed
that the speech is a priori locally present. If 1 (k, 1) is lower
than v and 9 (k, [) is lower than its minimum theoretical lower
value N, we decide that the speech is a priori absent. In mild
situations, a soft transition from speech to nonspeech decision
is performed.

Note that the condition on v (k,!) in (18) represents a local
decision that the speech is assumed to be a priori absent or
present using the information retrieved from a single frequency
bin k. It is known that speech miss detection is more destructive
for speech enhancement applications than false alarms. There-
fore, we choose the following conservative approach and intro-
duce a second speech absence detector based on (%, [) and the
concept of speech presence correlation over neighboring fre-
quency bins that has been exploited in earlier contributions such
as [12], [13], [31]. With the help of this second detector, we can
judge whether speech is absent based on the local, global, and
frame-wise results. For further explanation, we follow the nota-
tion of [13] and define the global and frame-based averages of
a posteriori SNR for the kth frequency bin as

wglohal k l

Z Wytobal (D (k —i,0)  (19)

where wglobal is @ normalized Hann window of size 2K + 1
and

(20)

| X
Vreame(l) = ;w@, )
Then, we can decide that the speech is absent in a given fre-
quency bin, i.e., dgiobal(k, 1) = 1, if Ygionai(k,1) < o, oth-
erwise it is present and Ggionai(k,!) = 0. Similarly, we decide
that the speech is absent in the [th frame, i.e., ¢rrame(l) = 1 if
Prame (1) < 1o, otherwise it is present and Ggrame(!) = 0. Fi-
nally, we propose the following a priori SAP

(j(k/ l) = (jlocal(k7 l)qglobal(k7 l)(jframe(l)-

Itis seen from (7) that there will be a numerical problem when
G = 1. To circumvent this, we use min [§(k, [), ¢max] instead of
4(k, 1) when computing the MC-SPP, where g,ax = 0.99.

21

B. Noise Statistics Estimation Using Multichannel MCRA

In this section, we generalize the single-channel noise
tracking approach in [12] to the multichannel case. First, recall
that the noise statistics are generally updated using the recursive
formula in (4). In order to avoid the cancellation of the desired
signal and properly reduce the noise, the parameter &, (k,!)
is defined as a function of p(k,[). Following the two-state
model for speech presence/absence described in the beginning
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of Section III and the recursive noise statistics update using a
smoothing parameter «,,, we have

Ho(k, 1) : &, (k. 1)
ay®yo (k,1—1)+
Hy(k, 1) : @0 (K,

The same argument of [12] can be used herein to show that the
above two update formulas can be combined into the following
form, as also shown in (4):

(l_av)y(kv l)yH(k
1) = by (k1 - 1).

1) (22)
(23)

®,, (k1)
= G (b, )@y (b, 1= 1)+ [1 = G (b, D] y (k. Dy (k, 1) (24)
where
(k1) = o + (1 = a,)p(k, 1) (25)

and 0 < «, < 1. Clearly, this generalizes the noise tracking
algorithm to the multichannel case.
Now to estimate p(k, 1), a good estimate of ®,,(k,[) is re-
quired. Unfortunately, this is not easy to achieve since the best
available estimate at time instant / and before estimating p(k;, !
is ®,,(k,l — 1). To solve this issue, we propose to proceed in
two steps after initialization as described next.
1) Initialization:
1) Knowing the significance level ¢ = 0.01 and using (12)
with (15) and (17), determine 1o(k,!) and Yok, 1).
2) ®,,(k,0) =0, 3, yy(k,0) = 0.

3) Recursively update éyy(k 1) using (3) for the first Lip;t
frames.

4) Assummg that the ﬁrst Ljnit frames consists of noise only,
set <I>w(k Linit) = ny(k,let) Also, set p(k, Linit) =
0. Linit has to be small enough, e.g., L,y = 20, to avoid
signal cancellation in the first frames.

At time frame [ > Lipi:

2) Iteration 1: )

1) Recursively update ®,,(k, ) using (3).

2) Use éw(k [ — 1) to compute

a) ¢I>m(k ) tI>JJ(k l) );
b) (k1) — yH(k, Q(I)”“ (k l— Dy(k,1);
&) (k1) — tr{®,, (k.1 = 1)y, ( }
d) f(k,l) — d)(k,l) - N; .
&) Bk,1) — yo(k1) - &, (k1 — 1)®,.(k, )b,
(k1 = 1)@, (k, D)y (k,1).
3) Using ¢(k,!) and 9 (k, 1), compute G(k, 1) as described in
Section IV-A.
4) Compute a first estimate of the MC-SPP:

YN SO (0 I P N B U0 |
p (k7l)—{1 —G(k, 1) [1+f(k,l)}’pl 1+§A(kvl)‘|}

5) Smooth the MC-SPP recursively using a smoothing param-
eter 0 < a, < 1as

Am,(kl 1

Pk, 1) — cpp(k, 1 = 1) + (1 — o, )pI (K, 1).
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6) Compute &, (k,1) — o, + (1 — a,)p(k, 1) and use it to
obtain a first estimate of the noise PSD matrix at time frame
l as

@)

Q (k l) (k7 l)évru(kv l— 1)+ [1_&v(k7 l)]y(k7 l)yH(k/ l)

3) Iteration 2:

1) Use éi?(k 1) instead of éw(k,j — 1) to perform Steps 1)
and 2) of Iteration 1 and obtain £(k,1), §(k, 1), and 5(k,1).
An improved estimate of the MC-SPP is given by

q(k, 1)

N sy N
oottt ]

2) Update &, (k, 1) = o, + (1 — e )p(k, 1). Then, a final and
finer noise PSD matrix estimate is obtained by (24).
In the first iteration, “X « )" stands for “assigning value ) to
X.” Actually, more than two iterations can be used in the pro-
posed procedure; but we observed no additional improvement
in performance after the second iteration.

[1+£(k, 1)} exp l—

V. NUMERICAL EXAMPLES

We consider a simulation setup where a target speech signal
composed of six utterances of speech (half male and half fe-
male) taken from the IEEE sentences [2], [32] and sampled at
8 kHz rate is located in a reverberant enclosure with dimensions
of 304.8 cm x 457.2 cm x 381.0 cm. The image method [33],
[34] was used to generate the impulse responses for two con-
ditions: anechoic and reverberant environments (with reverber-
ation time 79 = 210 ms). A uniform linear array with either
four or two microphones (inter-microphone spacing is 6.9 cm)
is used and the array outputs are generated by convolving the
source signal with the corresponding channel impulses and then
corrupted by noise. Two different types of noise are studied:
a point-source noise where the source is a nonspeech signal
taken from the Noisex database [35] (it is referred to as inter-
ference) and a computer generated Gaussian noise. Note that in
this case, the noise term in (1) is decomposed as v,, () = i,,(¢)+
wp(t), with 4,,(¢) and w,, (t) being the interference and AWGN.
The levels of the two types of noise are controlled by the input
signal-to-interference ratio (SIR = E [z}(t)] /E [i1(t)]) and
input SNR = F [z%(t)] /E [w}(t)] depending on the scenarios
investigated below!. The target source and the interferer are lo-
cated at (27.40 cm, 318.11 cm, 101.60 cm) and (277.40 cm,
318.11 cm, 101.60 cm), respectively. The microphone array ele-
ments are placed on the axis (yo = 101.60 cm, zp = 101.60 cm)
with the first microphone at (o = 128.25 cm, yo, 2¢) and the
nthone at (zg+ (n—1)r,y0, 2z0) withn = 1,..., N. To imple-
ment the proposed algorithm we choose a frame width of 32 ms
for the anechoic environment and 64 ms for the reverberant one
in order to capture the long channel impulse response, with an
overlap of 50% and a Hamming window for data framing. The
filtered signal is finally synthesized using the overlap-add tech-
nique. We also choose a Hann window for wgiobal, K1 = 15,
L =32, a, = 0.6, and o, = ay = 0.92 to implement the
algorithm described in Section I'V-B.

Note that we defined these measures at the first microphone because it is

taken as a reference [9], [22]. The fullband input signal-to-interfrence-plus-
noise ratio (SINR) is defined as SINR = E [22(¢)] / E [v(#)].
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Fig. 1. Multichannel speech presence probability versus instantaneous input
SINR after one and two iterations. The interference is an F-16 noise. N' =2 and
4 microphones. SIR = 5 dB. (a) SNR = 5 dB. (b) SNR = 10 dB.

A. Speech Components Detection

Here, we investigate the effect of the input instantaneous and
local (frequency-bin wise) SINR, defined at frequency bin &k and
time frame [ as SINR(k,1) = |X1(k,1)|* /pu,v, (k.1), on the
estimated MC-SPP. We consider an anechoic environment and
show the results for two types of interfering signals: F-16 and
babble noise. The noise-free signal observed at the first micro-
phone is treated as the clean speech and we compute its STFT
spectrum. We sort all the spectral components based on the input
SINR. Then, we compute the corresponding MC-SPP. Note that
we have 1141 speech frames, each composed of 257 frequency
bins (the FFT size is 512). In total, we have 293 237 components
to classify depending on the input SINR. Fig. 1 shows the vari-
ations of the estimated MC-SPP with respect to the input SINR
for two and four microphones. To emphasize the advantage of
the two-stage procedure, we also provide the MC-SPP estimates
after the first and second iterations described in Section IV-B.
As seen in Figs. 1 and 2, the second stage yields better detec-
tion results with either two or four microphones. As expected,
using more microphones can improve MC-SPP estimation per-
formance. This is extremely important for situations where the
speech energy is relatively weak.

In detection theory, it is common to assess the performance
of a given detector by investigating the correct detection rate
versus the rate of false alarms, known as receiver operating char-
acteristic (ROC). Our results are compared to the single-channel
SPP estimation method proposed in [13]. The latter is imple-
mented using the first microphone signal since we are taking
it as a reference for both single and multichannel processing.
In this scenario, we choose SIR = 5 dB and SNR is varied
between —10 and 20 dB with a step of 2 dB. In order to ob-
tain the ROC curves we normalize the subband speech ener-
gies by their maximum value and if the normalized subband en-
ergy is below —60 dB, the corresponding subband is assumed
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Fig. 2. Multichannel Speech presence probability versus instantaneous input
SINR after one and two iterations. The Interference is a babble noise. N =2
and 4 microphones. SIR = 5 dB. (a) SNR = 5 dB, (b) SNR = 10 dB.

to have no speech. If the corresponding SPP is larger than 0.5,
it is considered as a false alarm. If the normalized speech en-
ergy is larger than —60 dB and the SPP estimator is above 0.5,
it is considered as a correct detection. Subsequently, the false
alarm rate is computed as Py = N /N,, where N ¢ is the
number of false alarm occurrences over all the frequency bins
and time samples (N, is the overall number of speech com-
ponents). Similarly, the correct detection rate is computed as
P. = N./N,, where N, is the number of correct detection oc-
currences. In Figs. 3 and 4, we show the ROC curves. A clear
gain over the single-channel-based approach is observed espe-
cially in the case of babble noise which is more nonstationary
than the F-16 noise. This suggests that the utilization of multiple
microphones improves speech detection that can, consequently,
lead to better noise statistics tracking and reduction while pre-
serving the speech signal. More illustrations are provided in the
sequel to support this fact.

B. Noise Tracking

In this part, we illustrate the noise tracking capability of the
proposed algorithm. We also consider both cases of babble and
F-16 interfering signals in addition to the computer generated
white Gaussian noise such that the input SIR = 5 dB and
input SNR = 10 dB. The propagation environment is anechoic.
To visualize the result, we plot the estimated noise PSD for the
frequency bin 1 kHz. Figs. 5 and 6(a) and (b) depict the sub-
band energy of the clean speech at the first microphone and the
corresponding MC-SPP. It is clear that this probability takes
large values whenever some speech energy exists and is signif-
icantly reduced when the speech energy is low. The effect on
the noise tracking is clearly shown in Figs. 5, 6(c), (d), and (e)
where the proposed approach is shown to accurately track not
only the noise PSD, ¢,,, (k,[), but also the cross-PSD term,
¢v, v, (k,1). Notice that when the speech is active, the noise
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interference is babble noise.

tracking is halted. As soon as the speech energy decays, the
tracking resumes, thereby allowing the algorithm to follow the
potential nonstationarity of the noise.

In linear noise-reduction approaches (particularly using the
PMWEF), an accurate estimate of the output SINR &(k,1), de-
fined in (8), is required [22]. Therefore, we choose to show how
the resulting estimate of the frequency-bin-wise output SINR
[22] accurately tracks its theoretical value with respect to time at
frequency bin 1 kHz in Figs. 7 and 8. Slight mismatches between
the theoretical and estimated SINR values are mainly caused by
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Fig. 5. Noise statistics tracking: the interference is an F-16 noise. N = 4

microphones. SNR = 10 dB, SIR = 5 dB. (a) Target speech periodogram.
(b) Estimated speech presence probability. (¢c) Noise PSD tracking. (d) Noise
cross-PSD amplitude tracking. (e) Noise cross-PSD phase tracking. In (c), (d),
and (e), the blue, magenta, and black curves correspond to the exact instan-
taneous periodograms, time smoothed by recursive averaging with a forgetting
factor 0.92, and estimated terms (PSD, magnitude, and phase of the cross-PSD),
respectively.

the coexistence of two factors: nonstationarity of the noise and
presence of speech.

C. Integrated Solution for MC-SPP and Multichannel
Wiener-Based Noise Reduction

At time frame [, we have an estimate of the noise PSD ma-
trix at the output of the two-iteration procedure described in
Section IV-B. Also, we have an estimate of the noisy data PSD
matrix that is continuously updated. Using both terms, we de-
duce an estimate of the noise-free PSD matrix ®..(k,l) =
®,, (k1) — ®,,(k,1). Then it is straightforward to estimate
¢k, 1) as E(k, 1) = tr [015 (k, l)ém(kJ)]. The performance
of this estimator was shown in Figs. 7 and 8 and discussed in
Section V-B. Finally, we are able to implement the proposed
MC-SPP estimation approach as a front-end followed by one of
the next three Wiener-based noise reduction methods.

1) The minimum variance distortionless response (MVDR)
filter expressed as [9], [22]

& (k)& (k, )y
£k, 1)

where u; = [10 --- 0]7 is an N—dimensional vector.
2) The multichannel Wiener filter expressed as [9], [22]

hyvvor(k, 1) = (26)

& (k.. (k, uy

hW(kal) = l—i—é(k,l)

27)
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Fig. 6. Noise statistics tracking: the interference is a babble noise. N = 4
microphones. SNR = 10 dB, SIR = 5 dB. (a) Target speech periodogram.
(b) Estimated speech presence probability. (c) Noise PSD tracking, (d) Noise
cross-PSD magnitude tracking. (e) Noise coross-PSD phase tracking. In (c),
(d), and (e), the blue, magenta, and black curves correspond to the exact instan-
taneous periodograms, time smoothed by recursive averaging with a forgetting
factor 0.92, and estimated terms (PSD, magnitude and phase of the cross-PSD),
respectively.

3) A new modified multichannel Wiener filter that explicitly
takes into account the MC-SPP as

hyw (k,1) = Q(k, Dhavvor(k, 1) (28)

where

Pk, Y L/E(RD

Qk)=41- | ————
14 &(k, 1)

This new modification of the multichannel Wiener filter is
rather heuristic and aims at achieving more noise reduction in
segments where the MC-SPP value is small (i.e., noise-only
frames). When the speech is present the MC-SPP values are
close to 1 and both h,,w(k,!) and hw(k,!) have similar
performance. As for hyvpr(k,!) and hw(k,[), they both
belong to the same family of the so-called PMWF and it has
been shown that the Wiener filter leads to more noise reduction
and larger output SINR at the price of an increased speech
distortion [22], [36]. These effects will be further discussed in
the following.

The results are presented for the two previous types of
interfering signals: F-16 and babble, in addition to the case of
white Gaussian noise. The SIR is chosen as SIR = 5 dB. Also a
computer generated white Gaussian noise was added such that
the input SNR = 10 dB (the overall input SINR =~ 3.8 dB).
Two and four microphones were, respectively, used to process
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the data in both anechoic and reverberant environments. Fur-
thermore, we include the performance of the single-channel
noise reduction method proposed by Cohen and Berdugo and
termed “optimally modified log-spectral amplitude estimator”
(OM-LSA) [37]. The latter uses the IMCRA to track the noise
statistics [13], [37].

Let Vpesidual(t) and Zgieerea(t), respectively, denote the
final residual noise-plus-interference and filtered clean speech
signal at the output of one of methods described above (after
filtering, inverse Fourier transform, and synthesis). Then, the
performance measures that we consider here are [9], [22]

¢ Output SINR giVCIl by b {‘T’%ltered (t) }/E {vgesidual(t)}'

* Noise (plus interference) reduction factor given by

E{vi(t)}/E {0} osqua(t) }-

* Signal distortion index given by

O }/E (=i}

E {[xl(t) — Tiltered (
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Fig. 9. Spectrogram and waveform of the (a) first microphone noise-free
speech, (b) speech corrupted with additive noise (white Gaussian noise) and
interference (F-16 noise), (c) output of the MVDR filter, (d) output of the
multichannel Wiener filter, and (e) output of the modified multichannel Wiener
Filter. N = 4 microphones. SIR = 5 dB and SNR = 10 dB.
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Fig. 10. Spectrogram and waveform of the (a) first microphone noise-free
speech, (b) speech corrupted with additive noise (white Gaussian noise) and
interference (Babble noise), (c) output of the MVDR filter, (d) output of the
multichannel Wiener filter, and (e) output of the modified multichannel Wiener
Filter. N = 4 microphones. SIR = 5 dB and SNR = 10 dB.

For better illustration of the speech distortion and noise reduc-
tion in the time and frequency domains, we provide the spec-
trograms and waveforms of some of the noise-free, noisy, and
filtered signals in Figs. 9 and 10. Tables I-IV summarize the
achieved values of the above performance measures. Important
gains in terms of noise reduction are observed when using more
microphones in either reverberant or anechoic environments. In-
deed, using four microphones leads to better speech detection
as shown previously and also more noise reduction as expected
[22]. The proposed modification of the Wiener filter results in
more gains in terms of noise reduction and even larger output
SINR in all scenarios. However, it also causes more distortions
of the desired speech signal. This is understandable since the
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TABLE I
PERFORMANCE OF THE MVDR, WIENER, AND MODIFIED WIENER IN
DIFFERENT NOISE CONDITIONS: INPUT SNR = 10 dB, INPUT SIR = 5 dB
(INPUT SINR = 3.8 dB). ANECHOIC ROOM. ALL MEASURES ARE IN dB

Interf. Sig. F-16 Babble White

Output SINR 12.36 10.06 13.95

Noise reduction factor 10.14 7.38 12.14

Signal distortion index | —8.10 | —10.38 | —6.53
TABLE 11

PERFORMANCE OF THE OM-LSA METHOD (1ST MICROPHONE):
SAME SETUP AS TABLE |

Interf. Sig. F-16 Babble | White
Output SINR 12.78 9.12 14.51
Noise reduction factor | 10.43 6.07 12.24
Signal distortion index | —7.75 | —9.10 | —7.28

effects of miss-detections of speech signals are further empha-
sized by the new MC-SPP-dependent post-processor. Neverthe-
less, only very weak speech energy components are affected as
we observe in the spectrograms and waveforms in Figs. 9 and
10. Furthermore, we see that in all cases, the least noise re-
duction factor is achieved in the presence of the babble noise
which is highly nonstationary (as compared to the other two
types of interference). This happens because the noise statis-
tics vary at a relatively high rate that they become difficult to
track and more noise components are left due to estimation er-
rors of the noise PSD matrix. The comparison between the per-
formance of the multichannel processing in Tables I and III and
that of the single-channel processing shown in Tables Il and IV,
respectively, lends credence to the importance of using multiple
microphones for joint speech detection, noise tracking, and fil-
tering. This fact is pretty obvious in the anechoic case where,
for example, the SINR gains of the proposed modification of the
multichannel Wiener filter using four microphones is as high as
approximately 9 dB in the babble noise case while the speech
distortion gain is around —8 dB as compared to the OM-LSA
method. In the presence of reverberation, these gains shrink to
some extent, but our approach still achieves better performance
as illustrated in Tables III and IV.

VI. CONCLUSION

In this paper, we proposed a new approach to online multi-
channel noise tracking and reduction for speech communication
applications. This method can be viewed as a natural general-
ization of the previous single-channel noise tracking and reduc-
tion techniques to the multichannel case. We showed that the
principle of MCRA can be extended to the multichannel case.
Based on the Gaussian statistical model assumption, we formu-
lated the MC-SPP and combined it with a noise estimator using a
temporal smoothing. Then, we developed a two-iteration proce-
dure for accurate detection of speech components and tracking
of nonstationary noise. Finally, the estimated noise PSD matrix
and MC-SPP were utilized for noise reduction. Good perfor-
mance in terms of speech detection, noise tracking and speech
denoising were obtained.
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TABLE III
PERFORMANCE OF THE MVDR, WIENER, AND MODIFIED WIENER IN DIFFERENT NOISE CONDITIONS: INPUT SNR = 10 dB,
INpUT SIR = 5 dB (INPUT SINR = 3.8 dB), REVERBERANT ROOM, ALL MEASURES ARE IN dB

Filter MVDR Wiener Modified Wiener

Interf. Sig. F-16 Babble White F-16 Babble White F-16 Babble White

Output SINR 12.12 11.16 12.82 13.79 12.84 14.46 16.01 14.70 16.63
2 Mics.  Noise reduction factor 8.62 7.68 9.28 10.59 9.67 11.18 12.83 11.55 13.37

Signal distortion index | —19.08 | —19.25 | —19.57 —17.65 | —17.62 | —18.37 —16.33 | —16.32 | —17.13

Output SINR 15.80 15.20 15.22 17.67 17.14 17.30 19.88 19.27 19.45
4 Mics.  Noise reduction factor 12.26 11.67 11.66 14.26 13.73 13.85 16.48 15.88 16.02

Signal distortion index | —19.52 | —20.06 —19.86 —19.43 —19.81 —20.01 —18.48 —18.71 —18.97

TABLE 1V
PERFORMANCE OF THE OM-LSA METHOD (1ST MICROPHONE): SAME SETUP AS TABLE III

Filter MVDR Wiener Modified Wiener

Interf. Sig. F-16 Babble White F-16 Babble White F-16 Babble White

Output SINR 10.25 9.06 11.64 12.09 10.63 13.44 14.27 11.97 15.71
2 Mics.  Noise reduction factor 6.99 5.82 8.32 9.22 7.76 10.44 11.44 9.14 12.75

Signal distortion index | —15.88 | —16.49 | —15.63 —14.44 | —14.97 | —14.59 —13.50 | —14.08 | —13.88

Output SINR 12.63 11.65 13.84 14.53 13.23 15.67 16.99 14.81 18.03
4 Mics.  Noise reduction factor | 9.64 8.76 10.80 11.78 10.56 12.81 14.28 12.18 15.21

Signal distortion index —13.19 —12.79 | —13.17 —12.69 —12.32 —12.87 —12.14 | —11.87 | —12.49
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