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Conventional multichannel noise reduction techniques are formulated by splitting the processed micro-
phone observations into two terms: filtered noise-free speech and residual additive noise. The first term
is treated as desired signal while the second is a nuisance. Then, the objective has typically been to reduce
the nuisance while keeping the filtered speech as similar as possible to the clean speech. It turns out that
this treatment of the overall filtered speech as the desired signal is inappropriate as will become clear
soon. In this paper, we present a new study of the multichannel time-domain noise reduction filters.
We decompose the noise-free microphone array observations into two components where the first is cor-
related with the target signal and perfectly coherent across the sensors while the second consists of resid-
ual interference. Then, well-known time-domain filters including the minimum variance distortionless
response (MVDR), the space-time (ST) prediction, the maximum signal-to-noise ratio (SNR), the linearly
constrained minimum variance (LCMV), the multichannel tradeoff, and Wiener filters are derived.
Besides, the analytical performance evaluation of these time-domain filters is provided and new insights
into their functioning are presented. Numerical results are finally given to corroborate our study.

Tradeoff filter
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1. Introduction

Multichannel noise reduction has been garnering increasing re-
search efforts since the pioneering work of Flanagan et al. in 1985
[1]. In fact, numerous multichannel noise reduction approaches
have been recently developed [1-12]. These approaches have a
common objective, which is to recover the noise-free signal at
the reference microphone by employing the spatial and temporal
properties of the observed mixtures of sounds.

Noise reduction can be achieved in either the time or some
transform domains that include Fourier, Karhunen-Loéve, cosine,
and Hadamard [7]. Nevertheless, the transformation to the fre-
quency domain is the most widely adopted since it offers an effi-
cient way of implementation. For instance, in [8] Gannot et al.
proposed a channel transfer function ratio (CTFR) based general-
ized side-lobe canceler (GSC) where the CTFRs are estimated online
using the non-stationarity of speech. This approach was then ex-
tended to extract multiple target sources using the linearly con-
strained minimum variance (LCMV) in [9]. To properly design
noise reduction filters [e.g., LCMV, minimum variance distortion-
less response (MVDR), tradeoff or parameterized Wiener filter]
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some fundamental issues have to be taken into account. First, the
parameters affecting the tradeoff of noise reduction versus speech
distortion and the tradeoff of interference rejection versus ambient
noise reduction have to be determined [6,13]. Second, it is known
that, similar to the conventional single-channel processing [14],
the knowledge of only noise and noisy-data statistics is sufficient
to implement noise reduction filters [2,4-6]. Hence, the accurate
estimation of these statistics is paramount to effectively reduce
the noise without causing significant speech distortion [6]. In
[12], Cornelis et al. analytically studied the robustness of the
parameterized multichannel Wiener filter to second-order-
statistics estimation errors. Finally, even though frequency-domain
noise reduction filters are theoretically equivalent to their time-
domain counterparts, approximating the acoustic channel effect
in the frequency domain remains a major issue from both practical
and theoretical standpoints. Indeed, the time-domain linear convo-
lution is commonly approximated by a scalar multiplication in the
frequency domain. This approximation is reasonable provided that
the analysis window is larger than the channel impulse responses.
However, speech signals are inherently non-stationary, and taking
long analysis windows compromises the accurate tracking of noise
and speech statistics, thereby increasing the residual distortions.
To cope with this issue, Talmon et al. proposed to use convolutive
transfer functions in the frequency domain in [10]. However, this
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approach is still based on approximating the channel effect, and its
performance cannot be exactly predicted from a theoretical point
of view. Alternatively, the problem of noise reduction can be di-
rectly investigated in the time domain as in [2,4,11]. The analysis
is then more rigorous since no approximation in some transforma-
tion domain is involved. However, the performance evaluation of
the filtering techniques, including the aforementioned ones, is
known to be of a challenge. This issue is addressed in this paper.

In this contribution, we introduce a new study of the time-
domain multichannel noise reduction. In contrast to earlier con-
ventional investigations, this study is based on the decomposition
of the noise-free observations into two orthogonal components:
the desired signal, which is fully coherent across the sensors and
some additive interference. This decomposition is optimal in the
second-order-statistics sense, and is, consequently, tailored to
many widely used filters, including the maximum signal-to-noise
ratio (SNR), MVDR, space-time (ST) prediction, LCMV, tradeoff,
and Wiener filters. By utilizing this decomposition, we determine
new expressions for these filters, and show that the time-domain
MVDR, Wiener, tradeoff, and maximum SNR filters are identical
up to a scaling factor. Finally, we carry out a simplified yet rigorous
performance analysis of all these filters in terms of noise reduction,
speech distortion, and output SNR. The concepts investigated in
this paper can be easily extended to the transform domains includ-
ing those mentioned above.

The remainder of this paper is organized as follows: Section 2
describes the signal propagation model. Section 3 outlines the sec-
ond-order-statistics-based decomposition of the multichannel
noise-free speech observations into two orthogonal components.
An explicit form of the time-domain steering vector is obtained. Sec-
tion 4 defines the objective performances metrics, namely the
speech distortion index, noise reduction factor, and output SNR.
These measures are perfectly tailored to the noise reduction for-
mulation in this contribution. Section 5 revisits optimal multichan-
nel noise reduction techniques and provides new expressions for
the maximum SNR, MVDR, ST prediction, LCMV, tradeoff, and Wie-
ner filters. Section 6 contains some simulation results that corrob-
orate our study. Finally, Section 7 concludes this work.

2. Signal model

We consider the typical formulation of signal model in which an
N-element microphone array captures a convolved source signal in
some noise field. The received signals, at the discrete-time index k,
are expressed as [2,3,6,8]

Ya(k) = 8u(K) #5(k) + (k) = Xa(K) + 2a(k). n=1,2,....N, (1)

here g,(k) is the impulse response from the unknown speech source
s(k) location to the nth microphone, * stands for linear convolution,
and w,(k) is the additive noise at microphone n. We assume that the
signals x,(k) and z,(k) are uncorrelated and zero mean. By defini-
tion, x,(k)=g.(k)xs(k) is coherent across the array for
n=1,2,...,N. The noise signals u,(k) are typically either partially
coherent or non-coherent across the array. All signals are consid-
ered to be real, broadband, and to simplify the development and
analysis of the main ideas of this work, we further assume that they
are Gaussian. Note here that the signal model in (1) is general and
no particular transform will be used in the following. Thus, the re-
sults of this contribution can be easily extended to noise reduction
in transform domains.

By processing the data by blocks of L samples, the signal model
given in (1) can be put into a vector form as
yn(k):xn(l<)+vﬂ(k)7 n:1727"'7N7 (2)

where

Va(k) = [ya(k) ya(k—1) Yalk =L+ 1)), (3)

is a vector of length L, superscript " denotes transpose of a vector or
a matrix, and x,(k) and v,(k) are defined in a similar way to y,(k). It
is more convenient to concatenate the N vectors y,(k) together as

v(k) = [y](k) y5k) L] =x(k) +v(k), 4)

where vectors X(k) and v(k) of length NL are defined in a similar way
to y(k). Since x,(k) and v,(k) are uncorrelated by assumption, the
correlation matrix (of size NL x NL) of the microphone signals is

Ry = Ely(k)y' (k)] = Rx + Ry, (5)

where E[-] denotes mathematical expectation, and Ry = E[X(k)X"(k)]
and R, = E[v(k)v'(k)] are the correlation matrices of x(k) and v(k),
respectively.

With the above signal models, the objective of noise reduction
is to estimate any one of the signals x,(k) [2,4,8,11]. Without loss
of generality, we choose to estimate the speech signal received at
microphone 1, i.e., x;(k) in this paper. Our problem then may be
stated as follows [2]: given the N noisy signals y,(k), our aim is
to estimate x;(k) and minimize the contribution of the noise terms
vp(k) in the array output.

3. Linear array model

In our linear array model, we estimate the desired signal on a
sample basis from the corresponding observation signal vector of
length NL. At time k, the signal estimate is obtained as

%1 (k) = h'y(k), (6)

where h is a finite-impulse-response (FIR) filter of length NL. The
linear model in (6) can be rewritten as

1 (k) = W' x(k) + v(k)] = x; (k) + vm(k), (7)

where x{k) = h™x(k) is the filtered speech signal and v(k) = hTv(k)
is the residual noise. From (7), we see that X; (k) depends on the vec-
tor X(k); however, our desired signal at time k is only x;(k) [not the
whole vector x(k)]. Therefore, we should decompose x(k) into two
orthogonal vectors: one corresponds to the desired signal at time
k and the other corresponds to the interference. Indeed, it is easy
to see that this decomposition is

X(k) = x1(k)y, + X' (k) = Xqa(k) + X' (k), (8)

where x4(k) = x1(k)yx is the desired signal vector (of length NL), x'(k)
is the interference signal vector (of length NL),

T
=% T Vo ) 9)
is the normalized [with respect to x;(k)] cross-correlation vector (of
length NL) between x;(k) and x(k),

P, = [Vxn.o Vxal  Vxal-1 ]T =
(10)

is the normalized cross-correlation vector (of length L) between
x1(k) and x,(k),

yx"_,:W,l:O,l,...,L—l (11)

is the normalized cross-correlation coefficient between x;(k) and

xn(k — 1), and

X (k) = x(k) — x1 (k)y,, (12)

E[x, (k)X (k)] = 0. (13)
Substituting (8) into (7), we get

%1 (k) = W' [x, (k)y, + X (k) +V(K)], = Xq (k) + X, (k) + vm(k),  (14)



J. Benesty et al./Applied Acoustics 74 (2013) 343-355 345

where x(k) = x1(k)h"yy is the filtered desired signal and x, (k) =
h'x (k) is the residual interference. We observe that the estimate
of the desired signal at time k is the sum of three terms: the first
one is clearly the filtered desired signal while the two others are
the filtered undesired signals (interference-plus-noise). Since the
three terms are mutually uncorrelated, the variance of X, (k) is

0}, =05, + 05 +05 (15)
where
4y = O, (W' y)?

=h'Ryh, (16)
62 =h'Ryh

=h'Ryh - a2 (h'y,)%, (17)
02 =h'Ryh, (18)

0% = E[x4(k)] is the variance of the desired signal, Ry, = 02 ¥,¥5 is
the correlation matrix (whose rank is equal to 1) of x4(k), and
Ry = E[X'(k)x(k)] is the correlation matrix of X'(k). Comparing the
decomposition of the filtered microphone observations in (14),
and recalling its narrowband counterpart in the frequency domain
[6,8] we clearly see that yx plays the role of the steering vector of
the desired source. Thus 7y, can be viewed as the time-domain steer-
ing vector of the desired signal.

4. Performance measures

In this section, we define some useful performance measures
that will allow us to study the different multichannel noise reduc-
tion algorithms in the time domain developed later in this paper.
Since the signal we want to recover is the clean (but convolved)
signal received at microphone 1, i.e., x;(k), this microphone will
be serving as the reference sensor. In other words, we define our
performance measures by taking the first microphone signal as a
reference as we clarify in the following. These definitions slightly
differ from traditional (old) definitions that can be found in previ-
ous Refs. [7,14] in the sense that the decomposition of the noise-
free speech observations described above is taken into account.

The first important measure is the input SNR defined as:

62

iSNR = 6—;1, (19)
4]

where g2 = E[v} (k)] is the variance of the noise at microphone 1.

To quantify the level of noise remaining at the output of the
filter, we define the output SNR as the ratio of the variance of the
filtered desired signal over the variance of the residual interfer-
ence-plus-noise,' i.e.,

o2 o2 (h'y,)?
oSNR(h) = g _:fdgz = X‘g ) , (20)
X/ri VUrn h Ril‘lh
where
Rin =Ry + Ry (21)

is the interference-plus-noise correlation matrix. The objective of
the noise reduction filter is to make the output SNR greater than
the input SNR.

For the particular filter h = i;, where i, is the first column of the
identity matrix I (of size NL x NL), we have

0SNR(i;) = iSNR. (22)

! In this paper, we consider the interference as part of the noise in the definitions of
the performance measures.

With the FIR filter i, the SNR is not improved.
For any two vectors h and 7y, and a positive definite matrix Ry,
we have

('3,)” < (W'Ruh) (ViR,,'7, )- (23)

Applying the previous inequality to (20), we deduce an upper
bound for the output SNR:

oSNR(h) < 02 yIR;'y,, V. (24)

We define the array gain as the ratio of the output SNR (after
beamforming) over the input SNR (at the reference microphone)
[15,16], i.e.,

_ 0SNR(h)

A(h) = “NR (25)
From (24), we deduce that the maximum array gain is
Amax = 07, VxR, Py (26)

The noise reduction factor [14,17] quantifies the amount of
noise rejected by the filter. This quantity is defined as the ratio of
the variance of the noise at the reference microphone over the var-
iance of the interference-plus-noise remaining after the beam-
forming, i.e.,

2 2
O'y] 601

() = = h
" 6, T W Ry

(27)

The noise reduction factor is expected to be lower bounded by 1
for optimal filters.

In practice, the FIR filter, h, may distort the desired signal. In or-
der to evaluate the level of this distortion, we define the speech
reduction factor [2] as the variance of the desired signal over the
variance of the filtered desired signal at the output of the beam-
former, i.e.,

0?2 1
Ce(h) = 2L = —— | 28
L) O.)%m (hTyx)Z (28)
An important observation is that the design of a filter that does not
distort the desired signal requires the constraint

h'y, =1. (29)

Thus, the speech reduction factor is equal to 1 if there is no distor-
tion and expected to be greater than 1 when distortion occurs.

By making the appropriate substitutions, one can derive the
relationship among the previous measures:

_OSNR(h) _ &y(h)
T BSNR &y(h)
When no distortion occurs, the array gain coincides with the noise
reduction factor.

Another useful performance measure is the speech distortion
index [14] defined as

A(h)

(30)

E{[Xa (k) — x1 (k)]?
oty = PO RUOTD gy g2 31)
X1
The speech distortion index is always greater than or equal to 0 and
should be upper bounded by 1 for optimal filters; so the higher is
the value of vsq(h), the more the desired signal is distorted.

5. Optimal noise reduction filters

In this section, we revisit the most popular multichannel noise
reduction filters. Using the new decomposition in Section 3, we
provide new simplified expressions for the maximum SNR, Wiener,
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Fig. 1. Effect of the number of taps, L, on the signal distortion index. (a) MVDR and LCMV, Tgo = 240 ms. (b) Tradeoff filter with =5 and u =1, Tgo = 240 ms. (c) MVDR and
LCMV, Tgo = 580 ms. (d) Tradeoff filter with x =5 and p =1, Tgo = 580 ms. Old and new definitions of the signal distortion index are compared. The input speech-to-fan-noise

and speech-to-babble-noise ratios are equal to 10 dB.

MVDR, ST prediction, tradeoff, and LCMV filters. A better under-
standing of the functioning of these filters is then gained thanks
to these expressions.

5.1. Maximum SNR filter

The maximum SNR filter, hy,.y, is obtained by maximizing the
output SNR as defined in (20). Therefore, hy,. is the eigenvector
corresponding to the maximum eigenvalue of the matrix R, Ry,.
Let us denote this eigenvalue by J.x. Since the rank of the matrix
Ry, is equal to 1, we have

s = 11 (R R, ) = 02 YRy (32)
where tr(-) denotes the trace of a square matrix. As a result,
OSNR(himax) = 0% 7R3y Vs (33)

which corresponds to the maximum possible SNR according to the
inequality in (24). Obviously, we also have
Rimax = oRy, 7y, (34)
where o is an arbitrary scaling factor different from zero. While this
factor has no effect on the output SNR, it may have on the speech
distortion. In fact, all filters (except for the LCMV) derived in the rest
of this paper are equivalent up to a scaling factor. These filters also

try to find the respective scaling factors depending on what we
optimize.

5.2. Mean-square error (MSE) criterion

We define the error signal between the estimated and desired
signals as

e(k) =% (k) — x1(k) = h'y (k) —xa (k). (35)
which can be written as the sum of two error signals:
e(k) = eq(k) + er(k), (36)
where
ea(k) = Xga (k) — x1 (k) (37)
is the signal distortion due to the FIR filter and
er(k) = x;(k) + vpn (k) (38)
represents the residual interference-plus-noise.

The mean-square error (MSE) is then
J(h) = Ele* (k)] = J4(h) +],(h), (39)
where
Ja(h) = E[e3(k)] = o3, (W', — 1)° (40)
and
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Fig. 2. Effect of the number of taps, L, on the noise reduction factor. (a) MVDR and LCMV, Teo = 240 ms. (b) Tradeoff filter with p =5 and p =1, Tgo = 240 ms. (c) MVDR and
LCMV, Teo = 580 ms. (d) Tradeoff filter with u=5 and p =1, Tsp = 580 ms. Old and new definitions of the noise reduction factor are compared. The input speech-to-fan-noise

and speech-to-babble-noise ratios are equal to 10 dB.

J(h) = E[e(k)] = 0% + 02, . (41)
For the particular filter h = i;, the MSE is

Ji) =03, (42)

so there is neither noise reduction nor speech distortion. We can
now define the normalized MSE (NMSE) as

Ty J) 1

J(h) = Ty = ISNR- () + 08 (43)

where

psa(h) =220 (44
2

Ear(h) = % (45)

This shows how the MSEs are related to some of the perfor-
mance measures.

It is clear that the objective of noise reduction with the linear
array model is to find optimal FIR filters that would either mini-
mize J(h) or minimize J,(h) or J4(h) subject to some constraint.

5.3. Wiener filter

The Wiener filter is easily derived by taking the gradient of the
MSE, J(h), with respect to h and equating the result to zero:

hy =R, 'Ry, iy (46)

We can use the Woodbury's identity to invert Ry with the fact
that Ry, i1 = 07 7, to rewrite (46) as

R, 'Ry
hy = ——4i 47
R “n
Hence, we deduce that the output SNR is
0SNR(hy) = /max (48)

and the speech distortion index is a clear function of the output
SNR:

bsa(h) = ——— <1 (49)
sd \Hw (1+/1max)2\ .

The higher is the value of 1.« (and/or the number of micro-
phones), the less the desired signal is distorted. Clearly, we also
have:

0SNR(hy) > iSNR, (50)

since the Wiener filter maximizes the output SNR.
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Fig. 3. Effect of the number of taps, L, on the output SNR. (a) MVDR and LCMV, Tgo = 240 ms. (b) Tradeoff filter with x=5 and p =1, Tsp = 240 ms. (c) MVDR and LCMV,
Teo = 580 ms. (d) Tradeoff filter with u=5 and p =1, Tgo = 580 ms. Old and new definitions of the noise reduction factor are compared. The input speech-to-fan-noise and

speech-to-babble-noise ratios are equal to 10 dB.

It is of great interest to observe that the two filters hy,.x and hy
are equivalent up to a scaling factor. Indeed, taking

2
le

=1
1+ Amax

(51)

in (34) (maximum SNR filter), we find (47) (Wiener filter). Finally,
with the Wiener filter the noise reduction factor is

1 2
> (1+ ) .
( /max

Using (49) and (52) in (43), we find the minimum NMSE
(MNMSE):

(14 2max)’

Enr(hw) = iSNR - /max

(52)

~ iSNR

J(hy) :m< . (53)

5.4. MVDR filter

Another important filter, initially proposed by Capon [18] and
delineated in several forms [8,19], is the MVDR beamformer
which is obtained by minimizing the variance of the interference-
plus-noise at the beamformer output with the constraint that
the desired signal is not distorted. Mathematically, this is
equivalent to

minh'Ri,h
" (54)
st. h'y, =1,
for which the solution is
R.'y, R,'Ry,.
Obviously, we can rewrite the MVDR as
-1
Y
Buvon = % (56)
TxRy 7y
Taking
a3
o= (57)
;vmax

in (34) (maximum SNR filter), we find (56) (MVDR filter), showing
that the maximum SNR and MVDR filters are equivalent up to a
scaling factor. The Wiener and MVDR filters are also simply related
as follows:

hy, = aighyypr, (58)
where

T Ax
s =hyyy = TS (39)
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Fig. 4. Desired signal and interference at the output of the multichannel Wiener filter. (a) Tgo = 240 ms. (b) Tgo = 580 ms. Four microphones are used. The number of filter taps
is L = 50. The input speech-to-fan-noise and speech-to-babble-noise ratios are equal to 10 dB.

Here again the two filters hy and hyypr are equivalent up to a
scaling factor. From a theoretical point of view, this scaling is not
significant but from a practical point of view it can be important.
Indeed, the signals are usually non-stationary and the estimation
is done frame by frame, so it is essential to have this scaling factor
right from one frame to the other in order to avoid large distor-
tions. Therefore, it is recommended to use the MVDR filter rather
than the Wiener or maximum SNR filters in speech enhancement
applications.

It is clear that we always have

0SNR(hywvor) = 0SNR (), (60)
Usa (hmvor) = 0, (61)
Eo(hyvor) = 1, (62)
nr(hmvor) = A(hmvor) < &ne(hw), (63)
and

- 1 .
1 = J(hmvpr) = Alvon) > J(hw). (64)

5.5. Link between the MVDR filter and the space-time prediction
approach

In the ST prediction approach, we find a distortionless filter in
two steps [2,4].
First, we rewrite the error signal as

e(k) = h'x(k) — x: (k) + h'v (k) = eq(k) + ey (k), (65)
where

ea(k) = h'x(k) — x: (k), (66)
ey(k) =h'v(k). (67)

Assume now that we can find an ST filter g of length NL in such a
way that

x(k) = x1(k)g. (68)

This filter extracts from x(k) the correlated components to x;(k).
Replacing (68) in (66), we obtain

eq(k) = (h'g — 1)x; (k). (69)

The distortionless filter with the ST approach is then obtained
by

mhinhTth st. h'g=1. (70)

We deduce the solution:
-1
ho = > 8 (71)
g'Ry'g
The second step consists of finding the optimal g in the Wiener
sense. For that, we need to define the error signal vector

est(k) = x(k) — x1(k)g (72)
and form the MSE
J(g) = E[e;(k)eg(k)]. (73)

Minimizing J(g) with respect to g, we easily find the optimal ST
filter:

8 = ¥x: (74)

It is interesting to observe that the error signal vector with the
optimal ST filter corresponds to the interference signal, i.e.,

esto(k) = X(k) — x1(k)go = X'(k). (75)

This result is obviously expected because of the orthogonality
principle.
Substituting (74) into (71), we finally find that

-1
- 'T‘Vj’x . (76)
7Ry 7k

Comparing hyypr With hst, we see that the latter is an approx-
imation of the former. Indeed, in the ST approach the interference
signal is neglected: instead of using the correlation matrix of the
interference-plus-noise, only the correlation matrix of the noise
is used. Nevertheless, this difference between both beamformers
is due to the definition of our optimization problem in (70). Iden-
tical expressions of the MVDR and ST-prediction filter would have
been obtained if we considered minimizing the overall mixture en-
ergy subject to the no distortion constraint.

hg;

5.6. Tradeoff filter

In the tradeoff approach, we try to compromise between noise
reduction and speech distortion. Instead of minimizing the MSE
as we already did in finding the Wiener filter, we could minimize
the speech distortion index with the constraint that the noise
reduction factor is equal to a positive value that is greater than
1. Mathematically, this is equivalent to

min/, (h)

77
st. Ji(h)= ﬂa?}]7 7
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Fig. 5. Effect of the number of taps on the PESQ measure between x;(k) and the filtered signal. (a) MVDR and LCMV, Tgg = 240 ms. (b) Tradeoff filter with u=5and u=1,
Teo = 240 ms. (c) MVDR and LCMV, Tgo = 580 ms. (d) Tradeoff filter with x =5 and u =1, Teo = 580 ms. Old and new definitions of the PESQ measure are compared. The input

speech-to-fan-noise and speech-to-babble-noise ratios are equal to 10 dB.

where 0 < < 1 to insure that we get some noise reduction. By using
a Lagrange multiplier, u > 0, to adjoin the constraint to the cost
function, we easily deduce the tradeoff filter:

-1
2 1 Rin Px

hi, =0 02 T + UR; . T S aTp1. 0 78
T,1 X1 |7 x Vx¥x T HRin x ,uO';f + ‘)’;T‘Rl;] Vx ( )

where the Lagrange multiplier, y, satisfies J.(h) = /}0'3,1. By substi-
tuting (78) into the constraint in (77), we determine the relation-
ship between the tuning parameter u and the resulting noise
reduction

§— iISNR /Lmax2 . (79)
(U + Zmax)

In particular, for

e u=1, hr; =hy, which is the Wiener filter;

o U= 0, hT,O = hMVDRv which is the MVDR ﬁlter,

e u>1, results in a filter with low residual noise at the
expense of high speech distortion;

e <1, results in a filter with high residual noise and low
speech distortion.

Again, we observe here as well that the tradeoff, Wiener, and
maximum SNR filters are equivalent up to a scaling factor. As a

result, the output SNR of the tradeoff filter is independent of u
and is identical to the output SNR of the Wiener filter, i.e.,

0SNR(hy ) = 0SNR(hy), V. (80)

5.7. LCMV filter

We can derive an LCMV filter [20,21], which can handle more
than one linear constraint, by exploiting the structure of the noise
signal. In Section 3, we decomposed the vector x(k) into two
orthogonal components to extract the desired signal, x;(k). We
can also decompose (but for a different objective as explained be-
low) the noise signal vector, v(k), into two orthogonal terms:

(81)

where 7y, and v'(k) are defined in a similar way to yx and x'(k). Now,
our problem is the following. We wish to perfectly recover our de-
sired signal, x;(k), and completely remove the correlated noise com-
ponents, v1(k)yy. Thus, the two constraints can be put together in a
matrix form as

v(k) = v1(k)y, +V'(k),

C'h =i, (82)
where
C= [’Yx ‘YV} (83)

is our constraint matrix of size NL x 2 and
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Fig. 6. Effect of the input speech-to-babble noise ratio on the signal distortion index. (a) MVDR and LCMV, T = 240 ms. (b) Tradeoff filter with g =5 and p =1, Tgg = 240 ms.
(c) MVDR and LCMV, Tgo = 580 ms. (d) Tradeoff filter with =5 and p = 1, Teop = 580 ms. Old and new definitions of the signal distortion index are compared. Number of filter

taps, L = 50. The input speech-to-fan-noise ratio is 10 dB.
i=[1 o]

Then, our optimal filter is obtained by minimizing the energy at
the filter output, with the constraints that the correlated noise
components are canceled and the desired speech is preserved, i.e.,

hycyy = argmin h'Ryh

(84)
st. C"h=i.
The solution to (84) is given by
-1
hiemy = R;]C[CTR;1C] i (85)

In a similar way to [13], we demonstrate that the MVDR filter
can be written as a linear combination of two beamformers

hyyvor = ghiemy + (1 — @)hiare (86)
where
R Vx
hyiaren = m7 (87)
TR 1y (1 — Kk
g=—DRaB(121) (88)
61/1 + YVRin’ 'Yv(l - K)
2
B G 59)
(ViR 7 ) (ViR )

where R;; = Ry + Ry is the correlation matrix of all the incoherent
interference-plus-noise components, ¢ is a tradeoff parameter be-
tween hyatcy and hy ¢y that are optimal in the absence of interfer-
ence and non-coherent noise, respectively, and x measures the
collinearity? between the vectors y, and 9, in some transform domain
defined by the non-coherent noise whitening matrix R_/* [13]. We
observe from (86) that when @ approaches 0, the MVDR tends to the
matched filter while when g approaches 1, it tends to the LCMV, there-
by trading off the rejection of the coherent noise and the reduction of
the other residual noise components [13]. This tradeoff is determined
by the value of the collinearity factor, x, and the generalized coherent-
to-other noise components ratio, 62 YR/ 7, .
We always have

OSNR(hL(jmv) < OSNR(hMVDR), (90)
Usa(hyemv) = 0, (91)
Eo(emy) = 1, (92)
and we can show that

Enr(hiemy) < Enr(Bvvor) < Enr(hw). (93)

The LCMV filter is able to remove all the correlated noise but at
the price of a decreased overall noise reduction factor as compared
to the MVDR. Numerous numerical results and discussions are pro-
vided next to illustrate our findings.

2 The larger is x, the more collinear (or less orthogonal) are Ri’nf/zyx and R’”zyv.

in’
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Fig. 7. Effect of the input speech-to-babble noise ratio on the noise reduction factor. (a) MVDR and LCMV, Tgo = 240 ms. (b) Tradeoff filter with =5 and p =1, Tgp = 240 ms.
(c) MVDR and LCMV, Tgo = 580 ms. (d) Tradeoff filter with =5 and p =1, Teo = 580 ms. Old and new definitions of the noise reduction factor are compared. The number of

filter taps is L = 50. The input speech-to-fan-noise ratio is 10 dB.

6. Experimental results

In our setup, we have several channel impulse responses that
were measured at the Bell-Labs varechoic chamber which mea-
sures 6700 mm long by 6100 mm wide by 2900 mm high. A linear
array of four microphone elements, uniformly located from
(2437,500,1400) to (2737,500,1400), is used. The impulse re-
sponses were measured for two source locations: the first one is
$1=(1337,1938,1600) while the second is S, =(3337,1938,1600).
We investigate two reverberation conditions with the reverbera-
tion conditions Tgo =240 ms and Tgo = 580 ms, respectively. The
target speaker is assumed to be located at S; and generating a
12-s-long female speech (8 kHz sampling frequency). A babble
noise is added to the noise-free observations. Since we do not have
actual multichannel recordings of the babble noise, we take some
segments of this signal from the Noisex database [22] and overlap
them to each of the noise-free microphone signals. The resulting
noise has less spatial coherence than actual recordings and its re-
moval may, consequently, be more challenging. A source located
at S, and generating a ventilation signal (recorded fan noise from
[23]) is also included in the model. We tested several input SNR
values as indicated in the figures below.

In order to implement all the filters studied in this paper, accu-
rate estimates of the noise and noisy data correlation matrices Ry
and Ry are required. The noise-free correlation matrix, Ry, can be
retrieved using both matrices and the property of independence

between the noise and desired signal. Subsequently, the speech
steering vector yx is formed using the entries of Ry as described
in Section 3. To implement the LCMV defined in (85), the noise
steering vector 7y, needs to be estimated. This is achieved using
the definition of yy and the estimate of R,. In contrast to Ry that
can be continuously estimated from the microphone observations,
the estimation of Ry requires a voice activity detector (VAD) in
practice. The performance of all investigated filters could vary
depending on the performance of the VAD. However, we keep
the investigation of the effect of VAD accuracy out of the scope
of this paper due to space constraint since we are rather interested
in investigating the fundamental limits of the multichannel noise
reduction methods described in Section 5. Consequently, we as-
sume the knowledge of the noise samples at every time instant,
k, as in some other previous contributions including [4,7]. The sta-
tistics estimation and filtering are performed using batch process-
ing with 256 ms-length windows and an overlap rate of 75%
between consecutive frames.

For completeness, we investigate the performance of the trade-
off filter for three conditions: u =5, 1, and 0. Recall that u = 0 cor-
responds to the MVDR and p=1 corresponds to the traditional
multichannel Wiener filter. We also include comparisons to the
LCMV beamformer. All the multichannel filters investigated in this
paper are obtained by optimizing second-order-statistics-based
criteria. Hence, using second-order-statistics-based metrics to
evaluate their performance is the most natural and intuitive way
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Fig. 8. Effect of the input speech-to-babble noise ratio on the output SNR. (a) MVDR and LCMV, T, = 240 ms. (b) Tradeoff filter with p=5 and u =1, T = 240 ms. (c) MVDR
and LCMV, Tgp = 580 ms. (d) Tradeoff filter with i =5 and u = 1, Tgo = 580 ms. Old and new definitions of the output SNR are compared. The number of filter taps is L = 50. The

input speech-to-fan-noise ratio is 10 dB.

to comprehend their functioning. In particular, the noise reduction
factor, signal distortion index and output SNR are used for perfor-
mance evaluation here. To demonstrate the relevance of the new
definitions of our metrics in Section 4, we compare them to the
old definitions where the interference (as described in Section 3)
is included in the desired signal part (see [14] for details). It is
known that the perceptual evaluation of speech quality (PESQ)
measure is well correlated to the human perception. Therefore,
we include it in our evaluations. Precisely, we measure the PESQ
between the reference clean signal x;(k) and the overall filtered
speech signal x{k)=h"x(k) defined in (7) and we contrast it to
the PESQ measure between x;(k) and the newly defined filtered de-
sired signal x¢q(k) = h'x4(k) in (8). The results are first presented for
a variable number of filter taps at a constant overall input SNR (the
speech-to-babble-noise ratio and the speech-to-fan-noise ratio are
both equal to 10 dB). Afterwards, we fix the number of taps and see
the effect of the signal-to-babble-noise ratio for a given speech-to-
fan-noise ratio.?

Figs. 1-3 show the effect of the number of taps on the signal dis-
tortion index, noise reduction factor, and SNR at the output of the
investigated filter in the two reverberation conditions described
above. By observing the newly defined performance measures (de-
noted as new definitions on the legends of the figures), we first no-
tice that by increasing the number of taps, all filters achieve more

3 Similar observations can be made for a varying speech-to-fan-noise ratio and
constant signal-to-babble-noise ratio.

noise reduction and higher output SNR. In addition, a decreasing
signal distortion is observed at the output of the tradeoff filter with
u>0. These gains come at the price of an increasing complexity
since the noise and noisy data matrices are NL x NL dimensional.
A careful choice of the number of filter taps seems to be required
depending on the expected performance and complexity of the
noise reduction algorithm. Furthermore, we notice that as the
tradeoff parameter increases from 1 to 5, more noise reduction
and signal distortion are obtained at the output of the tradeoff fil-
ter. Comparing the subplots in (b) and (d) to those in (a) and (c)
from Figs. 1 and 2, respectively, we see that the MVDR does not dis-
tort the desired signal but achieves less noise reduction than the
Wiener filter. These results agree with the theoretical analysis in
Section 5. The LCMV does not distort the desired signal as well,
but it achieves the lowest values of noise reduction factor; even
lower than 1, which means that the total noise at its output was
amplified. The latter result is also confirmed by our analysis fol-
lowing the relationship between the MVDR and LCMV in (86). As
for the output SNR, we expect from our analysis in Section 5 that
its values would be the same for the tradeoff filter regardless of
u. The plots in Fig. 3 do not perfectly agree with our theoretical
findings. To explain this mismatch, recall that in all our analysis,
we assumed the coexistence of the desired speech signal and noise
at every time instant. This assumption is not always valid for
speech which is known to be non-stationary and its energy may
frequently decay to zero. In noise-only frames, the filters corre-
sponding to u > 0 attenuate all their outputs to 0 while the MVDR
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Fig. 9. Effect of the input speech-to-babble noise ratio on the PESQ measure between x;(k) and the filtered signal. (a) MVDR and LCMV, Tgo = 240 ms. (b) Tradeoff filter with
p=>5and =1, Teo = 240 ms. (c¢) MVDR and LCMV, Tgo = 580 ms. (d) Tradeoff filter with =5 and p = 1, Tgo = 580 ms. Old and new definitions of the signal distortion index are
compared. The number of filter taps is L = 50. The input speech-to-fan-noise ratio is 10 dB.

is regularized enough and does not suppress all signals in these
frames. Besides, it can be empirically verified that when increasing
L, the tradeoff filter becomes more aggressive in terms of signals
suppression when the speech energy decays. Hence, less noise
reduction is achieved by the MVDR followed by the Wiener filter
in noise-only frames. This translates into larger SNR gains of the
tradeoff filter with =5 as compared to the multichannel Wiener
filter and MVDR. The LCMV can dramatically deteriorate the SNR
especially when the reverberation level is relatively high as shown
in Fig. 3¢ for small number of taps (less than 40).

A fundamental result has to be emphasized in Figs. 1-3. In fact,
there is a clear discrepancy between the old and new definitions of
the three performance measures. For a given filter, the old metrics
indicate larger noise reduction, output SNR, and signal distortion
values than their new counterparts. This discrepancy is caused
by the interference in the filtered speech signal which is tradition-
ally included in the desired signal part. The behavior of the LCMV
evaluated by both types of measures in Figs. 1-3 provides an addi-
tional illustration of the relevance of the new definitions of the per-
formance measures: the old performance metrics show that this
beamformer significantly distorts the desired signal even though
it is defined to be distortionless.

Fig. 4 depicts the residual interference and the desired signal
parts at the output of the multichannel Wiener filter when
L =50. The interference level is remarkably lower than the desired
signal, but taking it into account substantially alters the expected

performance of the filters. Including the interference in the defini-
tion of the desired signal is certainly not correct since both compo-
nents are, by definition, orthogonal. The relevance of the new
decomposition is further illustrated from the perceptional point
of view in Fig. 5. Indeed, the fact that the MVDR and LCMV are
inherently distortionless is well confirmed by the new definition
of the desired signal part (their corresponding PESQ values are
equal to 4.5 regardless of the filter length) in contrast to the old
definition that considers the interference to be part of the desired
signal and results in lower PESQ values. Larger PESQ values are also
observed at the output of the tradeoff filter with ¢ =1 and 5 when
using the new definition of the desired signal part in the filtered
speech.

Figs. 6-8 depict the effect of the variations of the babble noise
level on the performance of the four filters for both reverberation
conditions. We fix the level of the desired signal and the fan noise
as in the previous simulations and change the desired signal-to-
babble-noise ratio. A clear decrease of the signal distortion index
is observed for the tradeoff filter with p =1 and 5. The signal dis-
tortion at the output of the tradeoff filter with >0 is mainly
due to the (spatially) non-coherent noise components associated
with the babble noise.* The signal distortion at the output of the

4 The fan noise is more coherent than the babble noise across the sensors. It is
known that if only the coherent signals overlap, perfect separation (with no
distortion) is theoretically achievable since we have more microphones than sources.
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MVDR and LCMV is maintained at its lowest values, by definition.
The noise reduction factors of the four filters are decreasing with re-
spect to the speech-to-babble-noise ratio for the range —10 to 10 dB.
When the level of babble noise is smaller than that of the fan noise
(values of speech-to-babble-noise ratio larger than 10 dB), the filters
are more focused on the suppression of the latter. It is known that
the suppression of spatially localized signals (fan noise in our case)
is easier than the suppression of other types of noise (babble noise
in our case). Consequently, we see that the noise reduction factors
start to increase when the speech-to-babble-noise ratio is higher
than 10dB, especially at the output of the tradeoff filter with
1 =1,2 when Tgp = 240 ms (i.e., when the fan noise is more coherent
across the sensors). An increasing SNR is also observed at the output
of all filters as shown in Fig. 8. At relatively high speech-to-babble-
noise ratios, the effect of reverberation becomes more noticeable,
and we see that as the reverberation time increases from 240 ms
to 580 ms, less SNR gain is obtained for all the studied filters.
Fig. 9 shows the achieved PESQ values when the old and new defini-
tions of the desired filtered speech are used. When the signal-to-
babble-noise ratio increases, the old and new definitions of the PESQ
score increase for the tradeoff filter with x> 0. Finally, the same
observations regarding the discrepancy between the old and new
definitions of the performance measures can be made, which con-
firms, again, the relevance of the definitions given in Section 4.

7. Conclusions

In this paper, we presented a new perspective on well-known
multichannel time-domain noise reduction approaches. We started
by demonstrating that the observed noise-free signals are com-
posed of two main components: the first is obtained by projecting
the noise-free observations on the reference microphone speech
signal and is perfectly coherent across the sensors, while the sec-
ond is orthogonal to the desired signal; it is, consequently, termed
interference. Thanks to this new decomposition, we introduced the
notion of source steering vector in the time domain and exploited
it to derive the multichannel Wiener, MVDR, LCMV, maximum
SNR, and tradeoff filters. Simplified expressions of these filters
were obtained and new insights into their functioning were gained.
For instance, it was demonstrated that the main difference be-
tween the time-domain MVDR, Wiener, maximum SNR, and trade-
off filters is attributed to a scaling factor that leads to different
levels of desired signal distortion and noise reduction, while all fil-
ters, theoretically, have the same SNR gain. We applied the same
decomposition to the noise observed by the microphones and for-
mulated the time-domain LCMV. We demonstrated a fundamental
relationship between the time-domain MVDR and LCMV thanks to
this decomposition and showed how the MVDR achieves a tradeoff
between the coherent and other residual (incoherent) noise com-
ponents reduction. Conversely, the LCMV can dramatically amplify
the incoherent noise depending on the level of interference and the
generalized collinearity factor between the steering vectors of the

noise and noise-free data defined in the time domain. We evalu-
ated the performance of all the noise reduction filters considered
herein and proved the relevance of our new definitions of perfor-
mance metrics that are perfectly tailored to our study.
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