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A Bayesian Framework for Blind
Adaptive Beamforming

Sarmad Malik, Jacob Benesty, and Jingdong Chen

Abstract—In this work, the problem of blind adaptive beam-
forming in the presence of steering-vector uncertainty is ad-
dressed within a Bayesian estimation framework. We express
the single-input multiple-output (SIMO) observation model in
the short-time-Fourier-transform (STFT) domain and employ a
variational formulation to obtain iterative closed-form learning
rules for inferring approximate posteriors on the steering vector
and the target signal. By varying the a priori belief in the top-level
statistical model, i.e., modeling a quantity as a random process or
an unknown deterministic entity, it is shown that the considered
framework yields a variety of beamforming algorithms including
the celebrated minimum variance distortionless response (MVDR)
beamformer. We highlight these interconnections and show by
means of simulation results that the Bayesian approach alleviates
signal distortion in noisy and uncertain environments as compared
to the conventional MVDR beamformer by adaptively learning
and incorporating uncertainty pertaining to the steering vector.

Index Terms—Adaptive beamforming, Bayesian learning,
steering-vector uncertainty, variational calculus.

I. INTRODUCTION

INCE the seminal work of J. Capon [1] regarding the spec-
S tral analysis of traveling waves by means of an array of sen-
sors, considerable research and effort has been directed towards
the development and analysis of beamforming algorithms. Ap-
plication of beamformers is ubiquitous in many areas of sensor
and array signal processing, e.g., wireless communications [2],
speech enhancement [3], [4], source localization [5], etc.
Various forms of fixed [6]-[8] or data-independent beam-
formers have been considered that include delay-and-sum
beamforming [9], superdirective beamformers [10]-[15], dif-
ferential microphone arrays [16], as well as schemes focused on
weight vectors for sidelobe control [17]. The basic motivation
behind the development of data-dependent beamforming was to
adaptively estimate or select weight vectors subject to relevant
constraints predicated upon achieving better resolution and
enhancing interference rejection capability [18], [19]. In this
regard, the minimum variance distortionless response (MVDR)
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beamformer (also referred to as the Capon’s beamformer [1])
has gained considerable importance as it does not distort the
desired signal. However, precise knowledge of the steering
vector is required for the distortionless characteristic to hold
[20], which is usually not available due to environmental
reasons or calibration errors. Works in [21] and [22], imposed
additional linear constraints to arrive at adaptive algorithms that
favored the signal arriving from the direction of interest, while
discriminating against disturbances from all other directions in
the presence of possible steering-vector errors.

Over the years, extensive research has been aimed at im-
proving the robustness of beamforming algorithms and here we
will try to present an overview of some of the approaches. Pro-
ponents in [2] utilized a kurtosis maximization approach, while
Bell ef al. in [23] adopted a Bayesian approach for robust adap-
tive beamforming. The uncertainty in source direction-of-arrival
(DOA) was incorporated in the estimation framework via an a
priori known probability density function (PDF) on the source
DOA. This resulted in a weighted combination of MVDR filters
pointed at the most probable set of DOAs. Li et al. in[18] showed
that accounting for the steering-vector uncertainty in the Capon
beamformer amounted to a diagonal loading scheme. In [24],
Doclo and Moonen dealt with fixed beamformers and utilized an
FIR filter-and-sum structure to put forth broadband design pro-
cedures that achieved robustness against gain and phase errors
in the array characteristics. A discussion pertaining to the design
of robust super-directive beamformers was reported in [15] that
employed the statistics of the sensor-array characteristics.

The statistical approach presented in [25] is of vital impor-
tance. It assumed some knowledge regarding the stochastic
variation of the steering vector and derived maximum-like-
lihood and Bayesian posterior estimators, depending on the
modeling of the target signal as a deterministic quantity or as
a random variable, respectively. A computationally efficient
state-space beamformer was proposed in [26]. Imposition of
the single convex constraint corresponding to the worst-case
mismatch in conjunction with the first-order Markov model
for the unknown filter weights yielded the constrained Kalman
filter, which could estimate time-varying filter weights.

In [27], Chen et al. addressed the issue of DOA mismatch
by astutely imposing two point quadratic constraint, which
rendered the optimization problem solvable in closed form
via Karush-Kuhn-Tucker condition. The approach was further
augmented with systemic computation of a diagonal loading
factor. Gaudes et al. in [28] aimed at attaining robustness while
maintaining the ability to control side lobes. The conventional
linearly constrained minimum variance (LCMV) cost function
was supported with an additional regularization constraint
to penalize the discrepancy between actual and target array
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responses. The problem was shown to be convex and solvable
by means of a support vector machine. A generalized eigen
value decomposition approach was pursued in [29], where a
blind acoustic beamformer was proposed. This blind approach
utilized a single-channel postfilter to alleviate distortions in the
estimated target signal.

The doubly constrained Capon beamformer based on a
spherical uncertainty set, originally introduced in [30], was
generalized by using an ellipsoidal modeling for the uncer-
tainty in [31]. The generalized approach was shown to be
efficiently solvable by means of semi-definite programming.
An essential relationship between robust MVDR beamformers
was highlighted in the context of probabilistic and worst-case
distortionless response constraints in [32], which enabled the
probabilistically constrained beamformers to be implemented
using their deterministic worst-case counterparts. In a rela-
tively recent correspondence [33], robustness was attained by
focusing on the reconstruction of the interference covariance
matrix rather than estimating the optimal diagonal loading
factor. Moreover, steering-vector estimation was carried out
without imposing a norm constraint making the estimate im-
mune to gain perturbations.

Motivated by the works of Attias et al. [34], [35], we address
the problem of blind adaptive beamforming using a variational
Bayesian framework. Bayesian approaches have been shown to
be inherently robust against outliers as the inference mechanism
relies on the whole probability mass rather than just point esti-
mates. Furthermore, they allow incorporation of a priori sta-
tistical belief [36]. The SIMO observation model is formulated
in the STFT domain and augmented with a first-order Markov
model [26], [37] on the steering vectors. Conjugate priors are
described over the steering vectors as well as the target signal,
leading to closed-form and efficiently implementable posterior
estimators via variational optimization, which can be invoked it-
eratively to tighten the lower-bound on the log-likelihood func-
tion. Further, we derive model/covariance parameters by means
of parametric optimization. It is shown that the variation of sta-
tistical belief in the top-level model can yield a variety of algo-
rithms including the conventional MVDR beamformer, which
in fact is a deterministic maximum-likelihood solution as shown
in [5]. Owing to the ubiquitous application of signal enhance-
ment by means of beamforming in various domains of signal
processing, we evaluate the derived algorithms with respect to
array again and target signal distortion, both of which have
been shown to directly affect system performance, e.g., accu-
racy of an automatic speech recognizer [38], output signal-to-
noise ratio in satellite communication systems [25], intelligi-
bility of a processed speech signal [39], etc.

We show that our statistical modeling within the variational
framework provides a built-in mechanism for adaptive learning
of the effective steering vector in reverberant and noisy environ-
ments, which minimizes target signal distortion. Modeling of
the unknown steering vector by means of the first-order Markov
model will inevitably yield robust learning rules based on gra-
dient-based adaptation with optimal step-size control. In our
approach, incorporation of second order statistics of the esti-
mated signal and observation noise prevents compromising the
array gain, while still maintaining fast convergence. We ana-
lyze the performance of our formulation in varying degree of

2371

Fig. 1. Time-domain signal model depicting the source signal s(#), room im-
pulse responses &, (t), observation noise signals v,,, (t), and sensor observation
signals ¥, (1).

stationary and non-stationary sensor noise, and steering-vector
uncertainty.

The rest of the paper is arranged as follows. In Sections II
and III, we present the STFT system model and our a priori
belief, respectively. Section IV comprises the derivation of the
variational Bayesian beamformer along with parameter learning
rules. Related algorithms are derived in Section V by modifying
top-level statistical modeling. Relevant instrumental measures
of performance are outlined in Section VI. Sections VII and
VIII present simulation results and conclusions of this work,
respectively.

II. SIGNAL MODEL

Consider a time-domain signal model as shown in Fig. 1,
where M sensors capture a convolved source signal in the pres-
ence of additive noise. The observation signal y,,,(¢) at the mth
microphone, where m = 1, ..., M, is expressed as

y?n(t) = 9m (t) * 5(t> + 'Um(t) s (1)
where s(#) is the source signal, and g,,, (#) and vy, (t) are the mth
system impulse response and additive observation noise, respec-
tively. Note that # is the sample-time index and * denotes linear
convolution. The short-time-Fourier-transform (STFT) repre-
sentation of (1) is then given as

Yinlk,n) = Gk, n) S(k,n) + Vi (k,n), ®)

such that the uppercase letters denote frequency-domain coun-
terparts of the terms in (1) for the kth frequency bin, whereas
n denotes the frame-time index. For notational convenience we
drop the frequency index k& and re-write the observation (2) as

Yo(n) = Gu(n) S(n) + Vin(n). 3)

Using (3), we express the M STFT observation signals in
vector notation as:

y(n) =g(n) S(n) +v(n), 4)
=x(n) 4+ v(n), %)
=a(n) X1(n) + v(n), ©6)
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where
y(n) & [Yi(n), ..., Y(n), ..., Yar(m)]", (7)
g(n) £ [G1(n).....Gn(n),...,Gu()]", (8)
x(n) £g(n) S(n), ©)
v(n) 2 [Vi(n),...,Vi(n),..., Var(n)] (10)
a(m) 2 |1,..., gﬁg %ﬁg (11)
and

Xi(n) £ Gi(n) S(n) (12)

is then the target signal to be estimated. It can be noticed that in
(6) a(n) is the steering vector for noise reduction [40], which
we model as a first-order Markov process [26]:

a(n)=Aa(n—1)+u(n), (13)

where A and u(n) are the state-transition coefficient and
process noise, respectively. First-order Markov modeling
as expressed by (13) will enable us to recursively learn the
posterior on the steering vector by means of a gradient-based
adaptive estimator with optimal step-size control.

A. Statistical Modeling and a Priori Beliefs

We model the vector a(n) in (6) and (13) as a normally dis-
tributed complex random process with an M x M predicted
error-covariance matrix [41]

iim):E{hWJ—an]h@0—§+MHH}
= AD(n— 1)+ Dy(n), (14)

where ﬁa(n — 1) is the M x M error-covariance matrix at time
n — 1, which is defined as

D.(n—1)
2 E{la(n—1) - a(n - Dfa(n—1) ~&n - 1"} (5

and a*(n) is the predicted mean:

at(n) = Aa(n—1), (16)
where a(n — 1) is the a posteriori mean. Note that
D,(n)2E [u(n)u (n)] (17)

is the M x M process noise covariance. Here, H and (-)* repre-
sent Hermitian transposition and complex conjugation, respec-
tively. Similarly, we express the observation noise covariance
and target signal variance as

&, (n) £ E [v(n)v¥(n)] (18)

and

¢x,(n) £ E[X1(n)X(n)] (19)

respectively. Distributions corresponding to (14)—(19) are given
in Appendix A.

Our aim is to estimate the target signal X;(n) within a
Bayesian framework, which due to its modeling as a random
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variable, amounts to learning of a posterior distribution. In
order to incorporate uncertainty regarding the steering vector
a(n) in the estimation process, it is inevitable that we must
seek learning rules for a steering-vector posterior as well. It is
also essential to realize that any ensuing estimator will rely on
the model parameters given by the set
O(n) = {8, (n), Bu(n), b, (n)} . (20)
which are unknown a priori and need to be estimated as well.
Thus, our inference tasks are summarized as:
« inference of posterior distributions on X; (n) and a(n), and

+ estimation of point estimates of the model parameters
e(n).

III. THE BAYESIAN APPROACH: INCORPORATION OF a PRIORI
BELIEF

In order to motivate the selection of a variational Bayesian
framework for deriving learning rules for state-space model de-
scribed by (6) and (13), an overview of different mathematical
approaches with respect to optimization criteria and resulting
solutions will be presented here.

Consider the target signal X;(n) in (6) as an unknown de-
terministic quantity. The steering vector a{n) for noise reduc-
tion is assumed to be known a priori and the observation noise
vector v(n) is modeled as a normally distributed random vari-
able according to (113). It is well known that the optimization
of the log-likelihood function In ply(n) | X1(n)] with respect to
the target signal X1(n), i.e.,

— 0 piy(n) | Xy ()] =0,

X () @D

results in the maximum-likelihood (ML)/MVDR beamformer
[1].

Incorporation of statistical belief regarding X;(n) according
to (114) is possible by changing the objective function to the
log-posterior function, which is then given as

() | X ()] pl X2 ()]
Py ()] } - )

lnp[Xi(n)|y(n)] =l {p

Again, the steering vector a(n) is considered to be known a
priori and the Gaussian modeling of v(n) given by (113) is
utilized. Optimization of the log-posterior function with respect
to Xy(n), ie.,

% lnp[Xi(n)|y(n)] =0,

(23)
yields the maximum- a-posteriori (MAP)/Wiener estimator.
The reader will appreciate that in both ML and MAP beam-
formers steering vector is assumed to be known and the target
signal is treated as an unknown deterministic quantity. As next
logical steps, the aim is to
 estimate the steering vector as well, and
* model the unknown quantities, i.e., the target signal and the
steering vector, as random variables rather than unknown
and deterministic.
We posit that modeling the quantities of interest, especially the
steering vector, as random variables will render the resulting
beamformer robust in a reverberant and noisy environment.
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In order to infer posteriors on more than one random vari-
able, we revert to the variational Bayesian methodology [36],
[42]. The derivation is initiated with the log-likelihood func-
tion Inp[y(n) | ©(n)] and X;(n) and a(n) are inserted using
(M + 1)—fold marginalization

Inply(n)|6(n)]
=1In '/p [y(n), X1(n),aln)|O(n)] dX1(n)da(n). (24)

Thereafter, we consider an arbitrary function ¢ [a(n), X1(n)] of

X1(n) and a(n), which in fact will behave as the approximate
posterior on the random variables of interest. It is has been doc-
umented in the literature that the tractability of estimated pos-
teriors in variational estimators can be ensured by utilizing the
mean-field approximation [42], i.e.,

a(n)] = q[X1(n)] ¢la(n)] .

The factorized posterior given by (25) is incorporated in (24) to
get

q[Xi(n), (25)

mply(o) o) =1 [ St CHAE

xply(n), X1(n),a(n) | O(n)] dX1(n) da(n).

Application of the Jensen’s inequality [43] to (26) results in

(26)

where 7 {¢[a(n)],q
bound (VLB).

The optimization of the VLB with respect to ¢[X1(n)],
qla(n)], and ©(n) can be achieved by means of the expression
given in Appendix B.

[X1(n)],0(n)} is the variational lower

IV. VARIATIONAL BAYESIAN ALGORITHM

We highlight that the optimization expressions (115) and
(116) require the application of functional derivative, i.e., dif-
ferentiation of a functional with respect to a function using the
Euler-Lagrange equation [42], [44] (see Appendix C). Using
the fundamentals of variational calculus (see Appendix B in
[45] for a detailed derivation), we summarily state the respec-
tive optimal solutions to (115) and (116) as

Ing*[Xy(n)]
+'/ In {p[y(n), X1(n),a(n)|O(n)]} ¢"[a(n)] da(n) (29)
ln g*[a(n)]
+ [ ol (), Xa().a0) €00} * X ()] X, 0)
| (30)

which have been termed in [36] as the theorems of varia-
tional Bayesian learning. The constants x; and ko impose
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the normalization constraints on the resulting distributions.
We use Bayes’ theorem and factorize the joint distribution
ply(n), X1(n),a(n)|€(n)] in (29) and (30) as

ply(n), Xi(n), a(n) | 6(n)]

=ply(n)| X1(n),a(n), 6(n)] p[X1(n), a(n) [O(n)]. 1)

=ply(n) [ X1(n),a(n), O(n)] p[X1(n) | O(n)] pla(n)].
(32)

In view of the prior distribution (114) on X1(n), we can write

p[X1(n) [O(n)] = p[X1(n)[¢x, (n)] (33)

and

plX1(n),a(n), |O(n)] = p[X1(n) [O(n)]pla(n)]  (34)
implies the assumption of mutual independence regarding
X1(n) and a(n). Furthermore, it must be emphasized that the
likelihood function p[y(n)| X1(n),a(n), ©(n)] is in fact the

distribution of the observation noise, i.e.,

ply(n)| Xi(n).a(n),O(n)] = plv(n)| Py (n)] (335)
and thus we have
ply(n)| X1(n),a(n),@(n)] = m
xexp{~[y(n)—a(n) Xy (n)] "8, (m)ly(n) —a(n) X ()]}
(36)

Note that the likelihood is conditioned on only one of the model
parameters, which is the observation noise covariance @, (n).

A. Target Signal Posterior

In order to derive learning rules for the target signal posterior,
first- and second-order functions of Xy (n) on the right-hand
side of (29) are isolated. A comparison of these isolated terms
with the left-hand side of (29) readily leads to the full posterior
estimator.

Using the Bayesian chain rule and substituting (32) into (29)
results in

Ing*[X1(n)] = k1 + / In {p[y(n)| X1(n),a(n), O(n)]
[

x p[X:1(n) | €(n)] pla(n)]} ¢*[a(n)] da(n), (37)
which simplifies to
In ¢*[X1(n)] =&} + / In {ply(n)| X1(n),a(n), &n))
x p[X1(n)|6(n)]} ¢*[a(n)] da(n)
— i} + By {In{ ply(n) | X1 (n). a(n), O(n)]

x p[ (n)|O)]}} (38)
where the term

w1 = Fg; {Inpla(n)]} + 1 39)
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comprises all the terms that are not functions of X (n) and thus
irrelevant for deriving learning rules for the mean and variance
of q[X1(n)], and
B ()= [ latw)] dan) (0

denotes the expectation with respect to ¢*[a(n)].

The distribution p[X;(n) |©(n)] = p[X1(n)|¢x,], as given
by (114), acts as a conjugate prior [42] and enforces a normal
form on ¢*[X1(n)] as well, i.e.,

In ¢*[X1(n)] = — In[r éx, (n)]

— [Xf(n) - X7 (n)} (;5;(} (n) [Xl(n) - X3 (n)} . (4D
where X (n) and ¢x, (n) are the posterior mean and variance of
the target signal, respectively. We carry out the following three
key steps:
1) substituting (114) and (36) into (38),
2) resolving the first- and second-order expectations corre-
sponding to F,«(-) = [(-) ¢*[a(n)] da in (38) using the
identities [41]:

a(n),

a(n) 8" (n) + Ba(n).

(42)
(43)

Eq:[a(n)]
Eqy:[a(n)a” ()]

>l

where &(n) and ,(n) are the estimated posterior mean
and covariance of the steering vector, and
3) comparing first- and second-order terms with respect to

X (n) in (38) and (41) to extract the expressions for pos-
terior mean and variance,

and arrive (see Appendix D) at the learning rules for the target

signal posterior. The estimated covariance ¢ x, (n) of the target

signal is then given as

B, () = [T 0@ ) + 5 )] L @)
where
() = {tr [0 (mBa(m)] + 650} . @)
and the mean of the target signal X, (n) is estimated as
Xi(n)=h{s(n)y(n), (46)

such that the M x 1 variational Bayesian weighting vector

hyp(n) turns out to be

~1

&, L (n)a(n).

(47)

Note that the incorporation of the steering-vector uncertainty

in hyp(n) is manifested via the inclusion of the steering-vector

state-error covariance @g(n), which is encapsulated in the com-

posite covariance term ¢ x, (n).

hyn(n) = [&7 (n)@, ' (n)a(n) + d5 ()]

B. Steering Vector Posterior

For deriving the learning rules for the steering vector poste-
rior, first- and second-order functions of a(n) on the right-hand
side of (30) are isolated. A comparison of the isolated terms with
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the left-hand side of (30) yields the recursive posterior estimator
for the steering vector.
We begin by substituting (32) into (30) to get

Ing*[a(n)] = s + / In {ply(n) | X:(n),a(n), O(n)]

X plX1(n) | O] pla(m)]} ¢ (X1 ()] dX1(n), (48)
which can be simplified to
I g*fa(n)] = )
FEgs {In {ply(n) | X1(n). a(n), O(m)] pla(n)]} } . (49)
where
Ky = By {nplX (O]} +52  (50)

encapsulates terms that are independent of a(n) and thus irrel-
evant for deriving learning rules for ¢*[a(n)], and

By, ()= [Oalanm 6

denotes the expectation with respect to ¢*[X1(n)].

Note that p[a(n)], which in fact is a prediction distribution
[41], is acting as a Gaussian prior according to (111). Thus, it
will enforce a Gaussian form on the resulting posterior as well.
Consequently, ¢*[a(n)] must be of the form:

Ing*fa(n)] = —In [7 [Ba(n)]
~ [a(n) — &))" &, (n) [a(n) — &(n) .
Substitution of (111) and (36) into (49) allows us to write
gy {1 {ply(n)| X1 (n), a(n). €(n)] pla(n)]} }
=F «

le{_ [y(n)—a(n)X; (n)}H¢;1 (n)[y(n)—a(n)X1(n)]

(52)

H+71

— [a(n) —a"(n)]” @, (n)[a(n)—at(n)] }—0— K4, (53)

where

’ ~+

pa =By, {~n [ (@) +Bam)]} 54
consists of terms that are not functions of a(n) and hence
dispensable for the ensuing completion of squares. Note that
analogously to (42) and (43), the expectations with respect to
q*[X1(n)] can be resolved using the identities [41]:

By [Xi(m)] £ Xi(n), (55)
Eg [X0(n) XT(0)] 2 X1(n) K5 (0) + 6x, (n) . (56)

After resolving expectations using (55) and (56), we compare
first- and second-order terms in a{n) in (53) to express the
learning rules for the steering vector posterior mean and error-
covariance as (see Appendix E)

-1

~ o~

a(n) = Ba(n) X1 ()@, ()y(n) + B2 (WA ()|, (57)

and
(58)
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respectively, where

-~ ~

_1 —1
Ba(n) = [¢v1<n>¢xl<n>+¢: <n>} (59)

is the modified prior error-covariance and

K(n) =4 (n) %5 (n) [ £ (0)8a(m) ST () + By (m)]  (60)

is the Kalman gain. Substitution of (58) and (60) into (57) fol-
lowed by rearrangements allow us to express the learning of the
posterior mean a(n) in a form resembling gradient-based adap-
tation (see Appendix F):

a(n) = [qsa(n) - K(n))?l(n)&“sa(n)]

P

<R, oy + 8 a6

=¥(n)a"(n) + A(n)X} (n)e(n), (62)
where
(n) = Bu(n)d () (63)
is a leakage matrix,
Aln) = Bom) [Ra(m)Ba(n) S5 () + 2, (0)] — (64)
is the Kalman step size, and
e(n) = y(n) — ¥(n)a* ()X, (n) (65)

represents the error signal.
The recursive estimator for the steering vector posterior can
thus be summarized as:

at(n)=Aaln—1), (66a)

B (n) = A2Ba(n — 1) + bu(n), (66b)
11
() = |8, (P, (1) + 82 (1) (66¢)
¥(n)= 5a(n)§:_l (n), (66d)
A(n) =By(n) [)A(l (n)®a(n) X (n)+®, (n)} , (66€)
e(n) =y(n) ~ ¥(n)a* (n) X1 (n), (661)
Aﬁ(n) = y:l(n) at+ A(n//\)Xf(nA)e(n)N, (66g)
Pa(n) =@a(n) — A(n)X{(n)X1(n)Pa(n) (66h)

It is interesting to observe that the recursive state-space esti-
mator given in (66) utilizes the target signal posterior, i.e., pos-
terior mean and variance of X;(n), which is estimated using
the VB weighting vector hyp of (47), and vice versa. This
highlights the exchange of the estimated first- and second-order
moments among the two posterior estimators as they are itera-
tively executed to maximize the lowerbound on the log-likeli-
hood function.

C. Parameter Learning Rules

In order to learn the model parameters &(n}, optimization
equations involving the VLB are to be solved for the respective
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model parameters (see Appendix G). From (113), (27), and (36)
it can be seen that the optimization of the VLB with respect to
&, (n) equates to the optimization of the log-likelihood function
(36) subject to the expectations with respect to ¢*[X1(n)] and
q*[a(n}]. Thus, (154) can be simplified to

7]
Bus, i { gy | Xso).alo) 0] | = oxr.
(67)
Note that due to the mutual independence assumption regarding
X1(n) and a(n), the expectation operator is rendered factoriz-
able:

Eq}l,q;{‘}:qul{'}Eq;{'}~

After applying relevant matrix calculus identities [46] to (67),
we obtain the ML optimal estimate of the observation noise co-
variance as

@, (n)

=By .z {Iyin) - amXa ()] [y(m)—am) X ()]} . (69)

Algebraic rearrangements and (42), (43), (55), and (56) can be
invoked to resolve expectations in (69) to get

(68)

@, (n)=y(n)y? (n)—y(n)al (n))?f (n) —ﬁ(n))?l (n)y (n)
+ [a(n)aH(n) + Esa(n)} [;?1(77,))?f(7;,) +dx, (n)} . (70)

Utilizing the following two definitions:

e(n) 2y(n) —amXim) (D
2(n) = ﬁ(ﬁ)ﬁH(ﬁ)d)xl (n) + @a(n)X1(n)X{(n)
+ @4 (n)dx, (n), (72)

we re-arrange (70) to express the learning rule for the observa-
tion noise covariance as:
@, (n) =&(n)e(n) + N2(n). (73)

As the characteristics of the first-order Markov model have
remained essentially unaltered, for brevity we refer to [47] for
the learning rule pertaining to @, (n).

In analogy to (67), we see that (156) effectively reduces to
the optimization of the distribution that carries ¢x, (n), which
is the prior on X (n). Thus, we write the optimization task as

iy A 2l o) L =0, (9)
« n o (n =0.
o LB ()
Substitution of (114) into (74) followed by application of the
derivative and resolution of expectations using (55) and (56),
results in the learning rule for the target-signal variance as

$x,(n) = X1 (m) X (n) + g, (n). (75)

V. EFFECT OF ELIMINATION OF UNCERTAINTY ON
POSTERIOR ESTIMATORS

In this section, we analyze the effect of reducing uncertainty
via selection of the Dirac delta function as an alternative for
prior distributions.
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A. Considering the Target Signal as a Random Variable and
the Steering Vector to be Known

We begin by setting the prior on a(n) to

pla(n)]

where ay indicates the known deterministic value of a(n). As
there is no uncertainty regarding the statistics of a(n), the op-
timal posterior is the same as the prior, i.e.,

= fd[a(n) — ag] . (76)

¢*[a(n)] = pla(n)], (77)
which when applied to (42) and (43) leads to:
Eq; [a(n)] = Ep[a(n)] [a(n)] = ap, (78)

B, [a(n)a® (n)] = Eplam)] [a(n)a (n)] =acafl. (79)

This implies that the VLB is then optimized under the limit

T ), ¢fam)]). 6wy . =o.

B ()0
(80)

Using (80), the VB weighting vector of (47) reduces to the well
known maximum- a-posteriori (MAP)/Wiener estimator:

5
9q[ X1 (n)]

[af @, " (n)ag + (/)Y (n)] o @&, (n)ag. (81)

hMAP(n)

B. Considering the Target Signal as Unknown and
Deterministic Quantity and the Steering Vector as a Random
Variable

We set the prior on the target signal as

pIXa(n)]) = 6 [Xa(n) = Ka(m)] | (82)

where X 1(n) is the deterministic estimate of the target signal.
Utilization of (82) results in the modification of (45) as
(/~)X1 (n) = tr [@Jl(n)aa(n)} \ (83)

corresponding to optimization of the VLB subject to the limit
dx,(n) — 0,ie,

17}

mﬂ{qPﬁ(”)],q*[a(wf)L

O(n)} =0. (84)

¢x,—0

Thus using (83) and (84), we can re-write the VB estimator
of (47) as a maximum-likelihood (ML) weighting vector with
steering-vector uncertainty (MLSU):

hyipsu(n)
= {ﬁH(n)Q;l('rL)ﬁ(n)—l—tr 45;1(70&5&(”)}} @, (n)a(n).

(85)

For (84), it is easy to see that the steering vector posterior esti-
mator in (66) simplifies to

at(n)=Aa(n—1), (86a)
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B, (1) = A2B,(n — 1) + Bu(n), (86b)
1 -1

Baln) = [dsvl('n)[axlmwowii ] =80,
(86¢)

T(n)=1I, (86d)
Aln) =& ( [K1()@a(n) K} (n) + @ <>}* (86¢)
e(n) = y(n) - [wm)alm () R1(n) (866)
a(n) =[#(n) — Tar]@* + A KT (n)els ), (862)
Bu(n) =ba(n) — Aln) <> 1(n)Ba(n) (86h)

where the leakage matrix ¥(n) is now an identity I; as high-
lighted by (86d). The posterior estimator in (86) corresponds to
the optimization of the VLB under the limit:

O 7 da@.em)|  =o.

, 8
dqla(n)] AL T 57

1

C. Considering the Target Signal to be Unknown and
Deterministic Quantity and the Steering Vector to be Known

We set both the target signal as well as steering vector priors
as

(88)

gﬂgql(n)}::5[;(101)-561(n)},
) (39)

pla(n)] =é[a(n) — ag] ,

which implies that the VLB will be optimized with respect to
the limits

T (T ) 0} 1y =0

Oq[ X1 (n)] .
P, (n)—0
(90)
causing the VB estimator in (47) to transform to the well known

ML/MVDR estimator:

_ -1
hML (n) = [a(llquv 1(’”)5\()} év 1(71,) ag . (91)
The interconnections of the VB, MLSU, MAP, and ML algo-

rithms within the Bayesian framework are summarized in Fig. 2.

VI. PERFORMANCE MEASURES

This section outlines instrumental measures of performance,
which will be used to assess the performance of beamforming
algorithms. Here, we will reintroduce the STFT frequency index
k for clarity.

We consider a generic estimator h(k, n) and the observation
model (6) to express the output of the beamformer as

Z(k,n) =hf (k,n) [a(k, n) X1 (k,n) + v(k, n)]
= Xa(k,n) + Vin(k,n), (92)
where
Xia(k,n) = b (k,n)a(k,n)X,(k,n) (93)
is the filtered desired/target signal and
Vin(k,n) = ¥ (k,n)v(k, n) (94)
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Variational Bayesian (VB)
algorithm

- Gaussian prior for the target signal
- Gaussain prior and first-order
Markov modeling for the steering vector
- Both target signal and steering vector
treated as random variables

ML with steering

vector uncertainty MAP / Wiener ML /MVDR

(MLSU) algorithm

- Delta prior for the - Gaussian prior for - Delta prior for
target signal the target signal the target signal

- Target signal is - Target signal is - Target signal is
unknown and unknown and unknown and
deterministic random deterministic

- Markov modeling for - Steering vector is - Steering vector is
the random steering assumed known assumed known
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Fig. 2. Bayesian framework for deriving adaptive beamforming algorithms.
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Fig. 3. Schematic diagram showing the orientation of the microphone array
and the location of the sound source.

yYMm (t) ]

represents residual noise. In view of (93), it is possible to ex-
press the distortion in the filtered desired signal as

Dia(k,n) = Xea(k,n) — X1(k.n). 95)

As the desired signal and the observation noise are modeled
as uncorrelated processes, the variance ¢z (k,n) of Z(k,n) is
given by [48]

b2(k,n) 2 BZ(k,m)Z*(k,n)] = dxyy (ks m) + dvs, (k, )

(96)

where:
Dx (k) ) [Xta(k,n) Xg(k,n)] 97)
by, (k,n) 2 E [Via(k,n)VE (k,n)] . (98)

Here, we define further three variances, i.e., the target signal
variance

bx,(k,n) = E[X1(k,n)X](k,n)], 99)
the observation noise variance at the first/reference sensor

Pvi (kon) = E[Vi(k,n) Vi (k,n)] (100)
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and the signal-distortion variance

¢py (k. 1) 2 B [Dig(k,n)Djy(k,n)] . (101)

With the definitions given in (97)—(100), the frame-wise full-
band input and output signal-to-noise ratios, i.e., iSNR and
oSNR, can be expressed as

Sox, (k,n)

. _ K
and
Z ‘75de (k'/ n)
0SNR(n) = & (103)

; v (k,n)’

respectively, where ), implies summation over all STFT bins.
Expressions given in (102) and (103), enable us to write the
array/SNR again as

0SNR(n)

Asxr(n) = SNR(n)

(104)
Now, we consider (99) and (101), and define the fullband
target signal distortion index as

Z ¢Dfd (k* n)

00 = S5 Ty
]

(105)

In the ensuing results section, we will analyze the performance
of the considered algorithms in terms of #(n) and Agnr(n).

VII. SIMULATION RESULTS

In our simulations, we considered a uniform linear array
(ULA) [4] with five sensors and an inter-sensor distance of
d = 1 cm situated in an enclosure of size 5 mx 4 m x 6 m
(r X y X 2z). A source was placed end-fire to the ULA at
35mx2mx1.5m (x x z X y), which was located 1 m
away from the nearest sensor located at 2.5 m X 2 m x 1.5 m.
The geometrical orientation of the ULA and the location of
the sound source are shown in Fig. 3. A sampling frequency
of f = 8 kHz was selected with wave propagation velocity
¢ = 343 m/s.

In order to generate the sensor signals, impulse re-
sponses were generated using the modified image method
[49], [50] for reverberation times corresponding to Tgy =
0.1,0.2,0.3,0.4, and 0.5 s, each of duration 512 ms. Impulse
responses corresponding to the nearest sensor for Tgy = 0.1 s
and 0.5 s are shown in Fig. 4(a) and (b), respectively. Data gen-
eration via reverberant room impulse responses is a convenient
way of introducing perturbations in the end-fire steering vector

e TAR o 28K o34y e*j‘LAk‘]T? (106)

Ak:2ﬂ'

s

d (107)
C

k
N
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Fig. 4. Room impulse responses generated using the image method [49] cor-
responding to the reference microphone for the Tso = 0.1 s and 0.5 s, respec-
tively. (a) Room impulse response for Tgy = 0.1 s. (b) Room impulse response
for Tgg = 0.5 s.

—120 —100 —80 —60 —40 —20 0

IO VO 0 e i\ G S G mee ) SR e
¥ :

3000 oo B A RRa s Lifan

2000

Frequency [Hz]

1000

0 15 20

10
Time [s]

Fig. 5. Periodogram of the considered babble noise signal.

and N is the frame length. An acoustic source comprising of 20
concatenated TIMIT database sentences was convolved with the
respective impulse responses and corrupted with sensor noise to
yield the observation signals of length 260 s. Although exper-
iments were conducted for a range of iSNR, representative re-
sults at iSNR, = 15 and 5 dB are presented for brevity. In order
to address relevant practical cases, simulations were carried out
with white Gaussian as well as babble observation noise. In
Fig. 5, the periodogram of the considered babble noise signal
is shown.

Processing of the observation/sensor signals was carried out
in the STFT domain using the overlap-add scheme [51] with a
window length of 128 ms and an overlap of 75%. The state-tran-
sition coefficient for the steering-vector posterior estimator was
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set to 0.9997. Here, we also highlight that the (co)variance pa-
rameter estimates @, (n) and ¢, (n) in (73) and (75), respec-
tively, and @u(n) in [47], are instantaneous estimates. For suit-
able performance of the algorithms these parameters were tem-
porally smoothed using a first-order recursion with v = 0.9 as
the smoothing constant.

In Sections IV and V, we have derived variational Bayesian
(VB), maximum a posteriori (MAP), maximum likelihood with
steering-vector uncertainty (MLSU), and the maximum-likeli-
hood (ML/MVDR) estimators. Of these four related algorithms,
the VB and the MLSU discern themselves by incorporating the
steering-vector uncertainty in the estimation process. Thus, in
the following sections we will analyze the performance of VB
and MLSU estimators in comparison to the ML/MVDR solu-
tion in noisy and reverberant environment. It should be noted
that in order to contain computational complexity and carry out
online processing we execute only one iteration per frame for
the VB and MLSU algorithms.

Although other sophisticated beamforming algorithms are
recognized and appreciated, e.g., [15], [24], [28], etc., the
selection of the non-blind MVDR beamformer as the reference
approach is principally motivated by two aspects. First, as a
result of our modeling and derivation we have shown that the
MVDR solution is a particular instance of the generic Bayesian
beamformer derived by imposing certain statistical simplifi-
cations within the parent variational framework. Therefore,
it is only logical then to compare the MVDR solution with
versions that incorporate additional a priori belief to demon-
strate direct advantages of modeling quantities of interest as
random variables. Second, the MVDR beamformer is a well
known and recognized algorithm which has been repeatedly
used by researchers [25], [30], [52] for objective and tangible
evaluation in domains ranging from digital communications to
room acoustics.

A. Target Signal Distortion

In Figs. 6(a) and 7(a), we analyze the performance of three
contending configurations at iSNR = 15 dB for varying Tgg
and for two different observation noise types. It can be no-
ticed that despite known direction-of-arrival and array geom-
etry, the ML solution suffers from target signal distortion in
the look direction due to room reverberation. As expected, it
can be seen that signal distortion increases with Tgo for all
configurations. The VB and MLSU solutions iteratively learn
the steering-vector posterior and incorporate the related uncer-
tainty, which enables them to achieve lower distortion as com-
pared to the ML configuration. The MLSU estimator consis-
tently achieves 5 dB improvement over the ML scheme for all
reverberation times and lowerbounds the VB algorithm as well.
We observe a similar trend in Figs. 6(b) and 7(b), where target
signal distortion was studied atiSNR, = 5 dB. Though the target
signal distortion has increased as compared to Figs. 6(a) and
7(a), the MLSU and VB estimators consistently outperform the
ML solution for larger reverberation times.

It is interesting to see that the VB algorithm, though it
lowerbounds the ML approach, exhibits more distortion than
the MLSU estimator. The understanding of this phenomenon
lies in the comparison of beamformer weights hyp(n) and
hypsu(n) as expressed in (47) and (85), respectively. Both
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Fig. 6. Performance comparison in the presence of white observation noise for
different Ty . (a) Signal distortion at iISNR = 15 dB. (b) Signal distortion at
iSNR = 5 dB.

of these weights are functions of the posteriors on the steering
vector a(n) that are learned by the state-space estimators given
by (66) and (86), respectively. The inherent and common aspect
of the respective state-space posterior estimators is that the
state-error covariance ¥,(n) decays monotonically with time
[42]. This asymptotically reduces the VB and MLSU weighting
functions to

hVB(n) |$a(n)4>0

~ [a ()@, (n)a(n) + o5 ()] T &, (m)a(n) (108)
and

s () g, o ~ [B7 ()8, (n)E(n)] ' 8, (n)a(n),

(109)
respectively. We can deduce easily from (108) and (109) that
due to the presence of the prior target signal variance ¢x, (n),
hvg(n) will cause relatively more distortion as compared to
hysu(n) even if ideal estimate of the steering vector a(n)
were available.
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Fig. 7. Performance comparison in the presence of babble observation noise
for different T's¢. (a) Signal distortion at iSNIR = 15 dB. (b) Signal distortion
at iSNR = 5 dDB.

B. Array Gain

Now, we consider performance with respect to the array gain
as depicted in Figs. 8 and 9 for iSNR = 15 dB and iSNR =
5 dB, respectively. For both iSNR cases, it can be seen that the
SNR gains remain more or less constant with Tgy. It is inter-
esting to see in the white observation noise case that despite ex-
hibiting more signal distortion, as evident from Fig. 8(a) and (b),
the VB solution carries out more noise suppression to attain an
SNR gain higher than the MLSU algorithm. The very structural
attribute of the VB weighting function hv(n) as highlighted
in Section VII-A via (108), which made it more prone to distor-
tion, makes it now more suitable for noise reduction. This is a
manifestation of the classical trade-off between SNR gain and
target signal distortion. Generally, we can conclude that reduced
target signal distortion achieved by the state-space algorithms
does not particularly compromise their array gains, as they lie
in very close vicinity of the ML/MVDR anchor.

C. Convergence Analysis

The rate of convergence is surely a non-trivial matter in any
blind iterative system. In order to reduce the convergence time,
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-

we have reduced the degree of blindness in our problem by set-
ting the steering-vector posterior as

ai(n) =1
B, ,(n) =6 (110)

in (66) and (86) in each iteration, where @1(n) and (/I;uu are
the mean and state-error covariance of the steering vector
corresponding to the 1st sensor, respectively. Configuring
& = 10716, which is a very small value, is indicative of a high
degree of certainty regarding the belief pertaining to @1 (7).

The plots in Figs. 10 and 11, outline the convergence of the
MLSU algorithm at iSNR = 15 dB for different T in the
presence of white Gaussian observation noise. It can be seen
that the algorithm convergences swiftly and does not exhibit
any long term divergence. The convergence floor reduces from
almost —20 dB to below —32 dB as Tgy varies from 0.5 s to
0.1 s. The MLSU algorithm exhibits similar characteristics at
iSNR = 5 dB, as well. As the underlying state-space estimator
is naturally affected by the observation noise, the respective
convergence floors now lie approximately between —18 and
—28 dD for the considered range of reverberation times.

VIII. CONCLUSIONS

A rigorous description of a variational Bayesian framework
for blind adaptive beamforming was presented. We initiated
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Fig. 10. MLSU convergence characteristics for different Tgq at iSNR =
15 dB.

our discussion with a single-input multiple-output observa-
tion model in the STFT domain. 4 priori stochastic belief was
expressed regarding the elements of the observation model,
which was then incorporated within the variational framework
to yield an iterative STFT-domain beamformer in closed-form
comprising target signal and steering vector posterior estimators.
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Fig. 11. MLSU convergence characteristics for different Tgq at iSNR =
5 dB.

It was shown that the systematic elimination of uncertainty
pertaining to the elements in the observation model, results in
different variants of the state-space variational Bayesian (VB)
algorithm. These variants included the maximum- a-posteriori
(MAP) estimator, a maximum-likelihood estimator operating
with steering-vector uncertainty (MLSU), and the conventional
maximum-likelihood (ML) estimator or the MVDR beam-
former. Thus, we showed the interconnections between these
variants using a unifying Bayesian framework. Finally, perfor-
mance analysis of the VB and MLSU algorithms was presented
in noisy and uncertain environments with respect to target signal
distortion, array gain, and convergence characteristics. In future
work, it would also be interesting to evaluate the performance
of the algorithms under test in real-time applications, e.g., auto-
matic speech recognition, and with different array geometries.

APPENDIX A
COMPLEX NORMAL DISTRIBUTIONS

Distributions corresponding to (14)—(19) are written as [45],
[47], [53]:
pla(n)]
B 1

=7
M|, (n)]
—1

X cxp{—[a(n) —at(n)] " &\5: (n) [a(n)—a™t (n)]} ,(111)

plu(n) | Pu(n)]
1

~ M [ By (n))

x cxp { —uf (n)®, ' (n)u(n)}, (112)
plv(n)[®y(n)]
_ 1
M [Py (n)]
x cxp { —v (n)®,(n)v(n)}, (113)
and
pIXa() [y ()] = ———
T ¢X1 (W)
xexp{—X{(n)px;(n)X1(n)}, (114)
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respectively, and | - | denotes the determinant of a matrix. Note
that only for notation convenience and brevity we have short-
ened the notation pla(n) |®4(n — 1)] in (111) to p[a(n)].

APPENDIX B
OPTIMIZATION EXPRESSIONS FOR THE VLB

The optimization of the VLB with respect to ¢[X1(n)],
qla(n)], and ©(n), i.e.,

G o Al L em) =0, (119)
o {alatn] K] 8} =0, (116)
Gor < a6} 0. 17

subject to the following normalization constraints:
[ i axim =1, (118)
[ i) datn) =1 (119)

will yield the required equations of learning for the posterior
distributions and unknown model parameters.

APPENDIX C
APPLICATION OF EULER-LAGRANGE EQUATION

In the context of Bayesian learning, the stationary point of
the VLB J {q[a(n)], ¢[X1(n)].©(n)} with respect to, e.g.,
q[X1(n)], is found by solving

g
———Lx gl X ,0
5y £ (el g X ()], O(n))
+Ax, {/q[Xl(n)]Xm(n) - 1} =0 (120)
for q[Xi1(n)], where Ax, is a Lagrangian multi-
plier that imposes the normalization constraint and

Lx, {qla(n)], q[X1(n)], ©(n)} satisfies:
T {qgla(n)], q[X1(n)],0(n)}
= [ £x. talatw)l aLX: ()], 0G)} dXa(). (121

APPENDIX D
TARGET SIGNAL POSTERIOR

The substitution of (114) and (36) into (38) followed by ex-
pansion enables us to write:

Eg: {In{ply(n) | X1(n),a(n),O(n)] p[X1(n) [€(n)]} }
=By { ~[y(n)—am)Xi(n)]” . (n) [y(n) —a(n)X1(n)]

— Xi ()t () Xa (n) f + g, (122)

where
kg = Ege {—Tn [xM @, (n)| + 7 ¢, (n)] }

comprises terms that do not depend upon X;(rn) and hence do
not play a role in the completion of squares. After comparing

(123)
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(122) and (41) and using (42), we can write the terms involving
first-order expectation as

X7 ()35 () Za(n) = By [ X7 (w)a ()05 (w)y(n)]
=X{(n)E, [aH (n) ] 45;1(n)y(n) ,
= Xi(ma(n)@, (n)y(n), (124)

from which it is straightforward to express the posterior mean
of the target signal as

X1(n) = éx, (AT ()@, (n)y(n). (125)

For terms involving the second-order functions of X;(n), we
again compare (122) and (41) and write

X7 (fL)g;&i (n)X1(n)
= X{(n) {Eq; [aH (n)di;l(n)a(n) ] + (;5;(} (n)} Xi(n),
(126)

which allows us to express the inverse posterior variance of the
target signal as

bx () = B [a (n)®,  (n)a(n)] + ¢ (n).  (127)
In order to resolve the second-order expectation in (127) by
means of (43), we exploit the matrix-vector identity [46]:

Eg [aH('rL)ﬁ‘jl(n)a(n) ] = Eu {tr [@;l(n)a(n) a(n)] }
(128)
where tr[-] is the trace operator. This rearrangement allows us

to take the expectation operator inside the trace operator, i.e.,
By [a¥ ()@, (n)a(n)]
=tr{ @;1(n)Eq: [a(n)a™(n)] }  (129)

and directly apply (43) followed by the reversal of the identity
(128) to obtain

Eys [a” (n)®, ' (n)a(n)]
— a7 ()@, (n)a(n) + tr [qs;l(n)@a(n)] .

Substitution of (130) into (127) makes it possible to express the
posterior variance of the target signal as

(130)

by, (n) = [@% ()@ (m)a(n) + 9t (n)] ICED
where
Fxim) = (i [0, Ba)] +axrm} . (32)
Substitution of (131) into (125) results in
Xi(n)=hip(n)y(n), (133)
where
hyg(n) = [ﬁH(n)di;l(n)ﬁ(n) + d;;& (n)} N &, L (n)a(n).
(134)

APPENDIX E
STEERING VECTOR POSTERIOR

We isolate first-order terms in a(n) in (53) and compare with
(52) to write:

~—1 P

¢, (n)a(n) = Ey Xik(n)di‘jl(n)y(n)—I—Qi]Ir (n)at(n)|.
(135)

Application of (55) to (135) results in

~—1

&, (n)a(n) = X7 ()@, (n)y(n) +B;  (ma*(n), (136)
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which enables the expressing of the posterior mean of the
steering vector as

—1

~ ~

a(n) = ®a(n) {Xf (n)®, (n)y(n) + @, (n)at ('n)] .

(137)

Now, we isolate second-order terms in a(#) in (53) and compare
with (52) to write:

~—1
¢a (n) = E‘Ij;(

—1

[Xf(n)@vl(n)Xl(n) +$: (n)} . (138)

We resolve the expectation in (138) using (56) to get

371(n):Eq;’1 [, (n)X1(n) X7 (n)] —|—QA5:71(7L)

a

(139)

= @;1(’”) [Xl(n) X{‘ (’IL)—I—q/b\Xl (n)} -l—@:_ (n), (140)
- (n).
(141)

From (141), we conveniently write the expression for the
steering-vector posterior error-covariance as

= X1 ()@, () X1 (n) + @, (), (n) + 0,

Ba(n) = [Rimes K + 8, )] . (4

where

d) = [0, 00Fx, 0+ B )] s

is the modified prior error-covariance. Application of the matrix
inversion lemma [37] to (143) leads to

B, (n) = Ba(n) — K(n) X1 (n)®a(n), (144)

such that the adaptation controller

~ ~ ~ ~ ~ ~1
K(n) = &, (n) X (n) [Xl(n)@a(n)x;* (n) + szsv(n)}

(145)
is structurally similar to the Kalman gain.

APPENDIX F
GRADIENT-BASED ADAPTATION

In order to attain a gradient-based adaptation rule from

a(n) = [@a(n) — K(n)X1(n)@a(n)

-1

o~

X [)?f(n)@vl(n)y(n) + 45: (n)aJr(n)} (146)

we rearrange to get

a(n) =®(n)a(n) + Pa(n)

-~

1
~K(n) 1(n)§a(n/,\))? (
— K(m)#(n)a(n) K1 (n), (147)
where
F(n) = B () (n). (148)
Now, we insert the expression
K(n)=®,(n)X;(n) [)?1 (n)@a(n) X7 (n) —I—@V(n)} B (149)
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for Kalman gain in (147) to obtain

a(n) =¥(n)a(n) + Sa(n) X7 (n)®; ' (n)y(n)

Py

X [)/(\'1(”)53(70‘?;(”) + &, (n) szsv(n)}
x @ 1 (n)y(n), ~ (150)
=w¥(n)at(n)+ A(n)X; (n)e(n), (151)
where
A(n) 2 By (n) [K1(0)@a(m) K5 () + & (m)]  (152)
and
e(n) 2 y(n)—@(n)a ()X (n). (153)
APPENDIX G

OPTIMIZATION EXPRESSIONS FOR OBTAINING PARAMETER
LEARNING RULES

8@?(77,) TAa [Xa(m)s ¢ [a(n)], €(n) = @y (n)} = Oar,

| (154)
&%()J [0 [X2 ()] *[a(n)], O(n) = Bu(n)} =0,
(155)
ML()J (X2 (0)], ¢* [a(n)], ©(n) = bx, (n)} =0.
(156)
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