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This paper deals with the problem of single-channel noise reduction in the short-time Fourier transform 
(STFT) domain. Many algorithms have been developed to solve this important problem, most of which 
generally assume that the STFT coefficients in different frequency bands are uncorrelated, so the noise 
reduction is achieved by applying a gain function to the STFT of the noisy speech in each frequency 
band. However, this assumption is not accurate and the STFT coefficients of speech signals between 
neighboring frequency bands are correlated in practice due to the use of small lengths of the fast 
Fourier transform (FFT) and overlap add/save techniques in implementation. This paper formulates the 
noise reduction problem by taking into account the interband correlation using the so-called bifrequency 
spectrum. Based on this formulation, a single-channel minimum variance distortionless response (MVDR) 
filter is derived, which is shown to be able to significantly improve the signal-to-noise ratio (SNR) and 
meanwhile maintain the desired speech not much distorted. Simulations are presented to justify the 
claimed merits of the developed MVDR filter.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Noise reduction, a term also used interchangeably with speech 
enhancement, refers to the problem of recovering a speech sig-
nal of interest from the microphone observations contaminated by 
some additive noise. This problem has long been one of the ma-
jor focuses in acoustic signal processing for voice communications 
and significant efforts have been devoted to solving it from dif-
ferent perspectives [1–10]. While some attempts have been made 
to tackle this problem with multiple microphones, leading to the 
so-called multichannel noise reduction techniques, most efforts in 
the literature focus on the single-sensor case as a large portion 
of current voice communication devices are equipped with only 
one microphone. Therefore, this paper is dedicated to the single-
channel noise reduction problem with the objective of reducing 
the noise from a noisy microphone signal, thereby improving the 
perceptual speech quality and signal-to-noise ratio (SNR) [5–8].

With a single microphone, noise reduction is typically accom-
plished by linear filtering, i.e., passing the noisy signal through 
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a filter. Since both the clean speech and noise are filtered at the 
same time, the most critical, yet most challenging, issue of noise 
reduction becomes one of designing a proper filter that can sig-
nificantly mitigate the noise effect while maintaining the filtered 
speech signal close to its original form. While the filters can be 
designed in the time domain [3,5,11–14], the frequency-domain 
approaches are preferred. There are many practical reasons for this. 
First of all, most of our knowledge and understanding of speech 
production and perception are related to frequencies. In the fre-
quency domain, it is not only easier to design noise reduction 
filters, but it is more straightforward to analyze and tune their 
performance as well. Secondly, thanks to the fast Fourier trans-
form (FFT), the implementation of frequency-domain filters can be 
made, in general, computationally more efficient than filters in the 
time domain. Furthermore, the statistics of both the speech and 
noise signals can be better exploited in the frequency domain to 
optimize performance.

Since speech signals are nonstationary and noise can be non-
stationary as well, frequency-domain approaches are implemented 
with the short-time Fourier transform (STFT). The fundamental 
paradigm of this structure consists of four basic steps. First, the 
noisy speech is divided into short-time frames. Then, each frame 
is transformed into the frequency domain via the STFT. This step 
is often called the analysis part of the process. Next, the STFT co-
efficients of speech and noise from different frequency bands (or 
STFT bins) are assumed to be uncorrelated and a gain is designed 
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Fig. 1. A clean speech signal sampled at 8 kHz.

and applied in each subband to obtain an estimate of the clean 
speech STFT coefficients. Finally, the time-domain enhanced speech 
is synthesized from the estimated clean speech STFT coefficients 
using the inverse STFT. In this paradigm, the most critical step is 
the design of the noise reduction gain. This issue has been exten-
sively studied over the last four decades and many algorithms have 
been developed, such as the spectral subtraction method [15,16], 
the Wiener gain [1,17], the maximum likelihood (ML) spectral am-
plitude estimator [17], the minimum-mean-square-error (MMSE) 
estimator [2], the maximum-a-posteriori (MAP) estimator [18], to 
name a few. A common assumption made by all these algorithms 
is that the STFT coefficients from different frequency bands are 
uncorrelated so that the noise reduction can be processed in ev-
ery subband independently. This assumption may be true if the 
signals to be dealt with are stationary and the frame length in 
the short-time analysis is sufficiently large. However, it is well 
known that speech is nonstationary and the frame length can-
not be too large. Moreover, overlap between neighboring frames 
is needed to avoid aliasing. As a result, the STFT coefficients 
from neighboring frequency bands generally exhibit strong cor-
relation. To illustrate this, we recorded a 1-s long speech signal 
in a quiet office room with a sampling rate of 8 kHz, as shown 
in Fig. 1. We divided this signal into overlapping frames with 
a frame length of 16 ms and 75% overlap (a typical configuration 
example of noise reduction). Every frame is transformed into the 
STFT domain using a 128-point FFT. We then computed the nor-
malized cross-correlation coefficients between different STFT fre-
quency bands. [If we denote by Ai and A j the FFT coefficients 
from the ith and jth frequency bands, the cross-correlation co-
efficient between the STFT coefficients from the two bands is 
defined as ρi j = E(Ai A∗

j )/

√
E(|Ai |2)E(|A j|2), where E(·) and ∗

denote, respectively, mathematical expectation and complex con-
jugate.] Fig. 2 plots the results for the 4th, 8th, and 16th FFT 
bands [8,19]. It is clearly seen that there is a strong correla-
tion between frequency bands that are next to each other. Then, 
one may ask some legitimate questions: is the interband correla-
tion important for noise reduction? If so, how can we use such 
correlation information to improve the noise reduction perfor-
mance?

Early attempts to answer the above questions can be found 
in [20] and [21], where an MMSE estimator and a Wiener filter 
were derived, respectively, based on the use of correlation among 
all the STFT frequency bands. While these algorithms are interest-
ing from a theoretical viewpoint, they suffer from some practical 
drawbacks. First, to implement them, one would need to compute 
the inverse of a correlation matrix for each time frame, whose 
dimension depends on the FFT length. This makes the implementa-
tion of the algorithms computationally prohibitive. Second, a large 
number of signal frames is required to estimate the needed corre-
lation matrices; otherwise, those matrices would be either rank 
deficient or ill conditioned. However, when a large number of 
frames are used, the estimate of these matrices would not fol-
low the true statistics of the nonstationary speech signal, causing 
degradation in noise reduction performance. As shown in Fig. 2, 
correlation only exists between neighboring frequency bands and 
there is not much correlation between distant bands. Based on 
this observation, a framework based on the bifrequency spectrum 
Fig. 2. The magnitude of the cross-correlation coefficients between: (a) the 4th and 
other frequency bins, (b) the 8th and other bins, and (c) the 16th and other bins. 
The sampling rate is 8 kHz, the frame length is 16 ms (128 points), the FFT length 
is 128, and the overlap is 75%.

was developed in [8] and [19]. Under this framework, Wiener and 
tradeoff filters were deduced, which are more practical than the al-
gorithms in [20] and [21] in terms of noise reduction performance, 
implementation, and robustness.

As we know, the celebrated minimum variance distortionless 
response (MVDR) algorithm, originally proposed by Capon [22], has 
been found effective in dealing with noise reduction with micro-
phone arrays. However, the design of an MVDR filter with conven-
tional approaches using only a single microphone is not possible. 
Recently, a framework considering inter-frame correlation informa-
tion was introduced in noise reduction and a multi-frame MVDR 
filter in the STFT domain was developed in [23] and [24], which 
can significantly improve noise reduction performance as com-
pared to the traditional approaches. However, it also introduces 
much longer delay (depending on the number of frames used), 
which makes it difficult to deploy in many real-time applications 
such as telecommunications and hearing aids, where the delay in-
troduced by a noise reduction processor is expected to be only 
a few milliseconds.

To take into consideration of both the noise reduction per-
formance and the delay issue, we attempt here to extend the 
basic idea in [8] and [19] to develop an MVDR filter that can 
exploit the interband information. In comparison with the inter-
band Wiener and tradeoff filters developed in [8] and [19] that 
may introduce much speech distortion, the MVDR filter developed 
in this paper can improve the output SNR and meanwhile main-
tain the speech distortion at a very low level. Compared with the 
multi-frame MVDR filter given in [23], the proposed MVDR filter 
achieves noise reduction through only filtering one frame (the cur-
rent processing frame) at a time. It, therefore, introduces much less 
delay.

The rest of this paper is organized as follows. Section 2 de-
scribes the signal model and the traditional formulation of the 
noise reduction problem in the STFT domain. Section 3 introduces 
the concept and definition of the bifrequency spectrum that can 
measure the degree of correlation between the STFT coefficients 
from different frequency bands. Then, in Section 4, an MVDR filter 
based on the correlation among all the frequency bands is devel-
oped. A more practical version of the MVDR filter is deduced in 
Section 5. Section 6 is concerned with the Wiener filter. Section 7
presents some useful performance measures for the evaluation of 
the developed MVDR filters. Simulation results are presented in 
Section 8 and finally conclusions are drawn in Section 9.
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2. Signal model and traditional formulation of the noise 
reduction problem

2.1. Signal model

The noise reduction problem considered in this paper is one 
of recovering the desired signal (clean speech) x(t), t being the 
time index, of zero mean from the noisy observation (microphone 
signal) [5,7,11]:

y(t) = x(t) + v(t), (1)

where v(t) is the unwanted additive noise, which is assumed to 
be a zero-mean random process, white or colored, but uncorre-
lated with x(t). The signals x(t) and v(t) are considered to be real 
and broadband. Using the STFT, (1) can be rewritten in the time-
frequency domain as

Y (k,m) = X(k,m) + V (k,m), (2)

where Y (k, m), X(k, m), and V (k, m) are the STFTs of y(t), 
x(t), and v(t), respectively, at the frequency band (or bin) k ∈
{0, 1, . . . , K − 1} and the time frame m. Since x(t) and v(t) are 
uncorrelated by assumption, the variance of Y (k, m) is

φY (k,m) � E
[∣∣Y (k,m)

∣∣2]
= φX (k,m) + φV (k,m), (3)

where φX (k, m) � E[|X(k, m)|2] and φV (k, m) � E[|V (k, m)|2] are 
the variances of X(k, m) and V (k, m), respectively.

2.2. Traditional formulation

With the signal model given in (2), the traditional approach 
assumes that the STFT coefficients from different subbands are 
mutually uncorrelated. In this case, the noise reduction problem 
consists of estimating X(k, m) from Y (k, m). This estimation is ac-
complished by applying a complex gain to the observation signal, 
Y (k, m), [7], i.e.,

X̂(k,m) = H(k,m)Y (k,m)

= Xf(k,m) + V rn(k,m), (4)

where Xf(k, m) � H(k, m)X(k, m) is the filtered version of the de-
sired signal and V rn(k, m) � H(k, m)V (k, m) is the residual noise. 
With this formulation, the aim of the traditional noise reduction 
approach is to find an optimal gain at every time frame m and fre-
quency band k, i.e., Ho(k, m), so that the level of the residual noise 
after filtering [synthesized from V rn(k, m)] is significantly smaller 
than that of the original noise, v(t), and meanwhile the filtered 
version of the desired signal [synthesized from Xf(k, m)] is (per-
ceptually) as close as possible to the original signal, x(t). See [5–8,
11] and many references therein on how different optimal noise 
reduction filters are obtained. The issue with the traditional for-
mulation is that the interband correlation is neglected. In the next 
section, we show how this interband correlation can be measured 
with the so-called bifrequency spectrum.

3. Bifrequency spectrum

Before we discuss how the interband correlation can be used, 
we first introduce the term bifrequency spectrum. Let a(t) be 
a zero-mean real random variable for which its frequency-domain 
representation is A(k, m). We define the bifrequency spectrum as 
[25,26]

φA
(
k,k′,m

)
� E

[
A(k,m)A∗(k′,m

)]
, (5)
where k and k′ are possibly two different frequency bands. Ba-
sically, the bifrequency spectrum is a measure of the correlation 
between two different frequency bands of the same signal. If a(t)
is a wide-sense stationary signal and a long FFT length is used to 
represent A(k, m), the bifrequency spectrum reduces to

φA
(
k,k′,m

) =
{

φA(k,m), k = k′
0, k �= k′ (6)

where φA(k, m) = φA(k, k, m) is the variance of A(k, m). Thus, for 
a stationary random process, the Fourier coefficients from two dif-
ferent bands are uncorrelated. However, for a nonstationary ran-
dom process such as speech, the bifrequency spectrum will exhibit 
nonzero correlations along the so-called support curves other than 
the main diagonal k = k′ as it was shown in Section 1. It seems 
then appropriate, when deriving noise reduction algorithms in the 
STFT domain, to take into account the spectral correlation that are 
not negligible in this context.

4. MVDR filter with correlation among all frequency bands

Let us first concatenate all the K frequency bands of the obser-
vation signal in a vector:

y(m) �
[

Y (0,m) Y (1,m) · · · Y (K − 1,m)
]T

= x(m) + v(m), (7)

where the superscript T is the transpose operator, and x(m) and 
v(m) are also vectors of length K , which concatenate all frequency 
bins of the desired and noise signals, respectively.

To estimate the desired signal, X(k, m), from y(m), we first de-
compose x(m) into two orthogonal components:

x(m) = X(k,m)γ X,k(m) + xi,k(m), (8)

where

γ X,k(m) = [
γX (0,k,m) · · · γX (K − 1,k,m)

]T

= E[x(m)X∗(k,m)]
φX (k,m)

(9)

is the (normalized) interband correlation vector,

xi,k(m) = x(m) − X(k,m)γ X,k(m) (10)

is the interference signal vector with respect to the desired signal, 
X(k, m), and

γX
(
k,k′,m

)
� φX (k,k′,m)

φX (k,m)
(11)

is a function of the bifrequency spectrum of X(k, m). By taking the 
definition of xi,k(m) in (10) and using (9), we can easily obtain

E
[

X∗(k,m)xi,k(m)
] = 0. (12)

Now, we propose to estimate the desired signal as follows:

X̂(k,m) = hH
k (m)y(m), (13)

where hk(m) is a complex-valued filter of length K and the su-
perscript H is the conjugate-transpose operator. Using (8), we can 
rewrite (13) as

X̂(k,m) = hH
k (m)

[
x(m) + v(m)

]
= X(k,m)hH

k (m)γ X,k(m)

+ hH
k (m)xi,k(m) + hH

k (m)v(m)

= Xfd(k,m) + Xri(k,m) + V rn(k,m), (14)
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where

Xfd(k,m) � X(k,m)hH
k (m)γ X,k(m) (15)

is the filtered desired signal,

Xri(k,m) � hH
k (m)xi,k(m) (16)

is the residual interference, and

V rn(k,m) � hH
k (m)v(m) (17)

is the residual noise. It can be checked that the estimate of the 
desired signal is the sum of three terms that are mutually uncor-
related. Therefore, the variance of X̂(k, m) is

φ X̂ (k,m) = hH
k (m)�y(m)hk(m)

= φXfd(k,m) + φXri(k,m) + φV rn(k,m), (18)

where

�y(m) � E
[
y(m)yH (m)

]

=

⎡
⎢⎢⎣

φY (0,m) φY (0,1,m) · · · φY (0, K − 1,m)

φY (1,0,m) φY (1,m) · · · φY (1, K − 1,m)
...

...
. . .

...

φY (K − 1,0,m) φY (K − 1,1,m) · · · φY (K − 1,m)

⎤
⎥⎥⎦

(19)

is the correlation matrix of y(m),

φXfd(k,m) � E
[∣∣Xfd(k,m)

∣∣2]
= φX (k,m)

∣∣hH
k (m)γ X,k(m)

∣∣2
, (20)

φXri(k,m) � E
[∣∣Xri(k,m)

∣∣2]
= hH

k (m)�xi,k (m)hk(m)

= hH
k (m)�x(m)hk(m)

− φX (k,m)
∣∣hH

k (m)γ X,k(m)
∣∣2

, (21)

φV rn(k,m) � E
[∣∣V rn(k,m)

∣∣2]
= hH

k (m)�v(m)hk(m), (22)

and �xi,k (m), �x(m), and �v(m) are the correlation matrices of 
xi,k(m), x(m), and v(m), respectively.

Now, we can derive an MVDR filter by minimizing φ X̂ (k, m)

with the constraint that the desired signal is not distorted. Mathe-
matically, this is equivalent to

min
hk(m)

hH
k (m)�y(m)hk(m) subject to hH

k (m)γ X,k(m) = 1, (23)

for which the solution is

hMVDR,k(m) = �−1
y (m)γ X,k(m)

γ H
X,k(m)�−1

y (m)γ X,k(m)
. (24)

Using (9), the interband correlation vector γ X,k(m) can be 
rewritten as

γ X,k(m) = E[x(m)X∗(k,m)]
φX (k,m)

= �x(m)ik+1

φX (k,m)
= [�y(m) − �v(m)]ik+1

φY (k,m) − φV (k,m)
, (25)

where ik+1 is the (k +1)th column of the K × K identity matrix, IK . 
Now, γ X,k(m) depends on the second-order statistics of the obser-
vation and noise signals. The statistics of the noise signal can be 
estimated in practice, as in the traditional approach, with the help 
of a voice activity detector (VAD).

In the particular scenario where the interband correlations of 
both speech and noise are negligible, the correlation matrix �y(m)

degenerates to a diagonal one and (8) simplifies to

x(m) = X(k,m)ik+1 + xi,k(m), (26)

so xi,k(m) resembles x(m) except for its (k +1)th component which 
is 0. In this case, the MVDR filter becomes

hMVDR,k(m) = ik+1, (27)

which does not modify the observation signal. As a result, there is 
neither noise reduction nor speech distortion.

5. Suboptimal MVDR filter using correlation among neighboring 
bands

In the previous section, we derived an optimal MVDR filter that 
exploits the correlation among all the frequency bands. However, 
this filter may have some practical drawbacks. First, to implement 
it, we need to compute the inverse of a K × K matrix at each 
time frame, which is computationally very expensive as K is usu-
ally large. Second, we need a large number of signal frames (>K ) 
to estimate the correlation matrix �y(m); otherwise, it would be 
ill conditioned or even rank deficient. Furthermore, when a large 
number of frames is used, the estimate of this matrix (as well as 
other quantities) would not follow the true statistics of the non-
stationary speech signal, causing degradation in noise reduction 
performance. As shown in Section 1, correlation is strong only be-
tween neighboring frequency bands, while it is negligible between 
distant bands. Given this, we introduce a suboptimal, yet more 
practical, approach in this section that considers correlation be-
tween only neighboring frequency bands. So, instead of estimating 
X(k, m) from the noisy vector, y(m), of length K , we now estimate 
it from a lower dimensional vector:

yk(m) �
[
Y
(
k − K −

k ,m
) · · · Y (k − 1,m)

Y (k,m) Y (k + 1,m) · · · Y
(
k + K +

k ,m
)]T

(28)

of length L = K −
k + K +

k + 1 � K , where K −
k and K +

k are, respec-
tively, the numbers of bins before and after the frequency bin k. 
We can also write (28) as

yk(m) = xk(m) + vk(m), (29)

where xk(m) and vk(m) are defined in a similar way to yk(m). 
Again, we decompose xk(m) as follows:

xk(m) = X(k,m)ρ X,k(m) + x′
i,k(m), (30)

where

ρ X,k(m) � E[xk(m)X∗(k,m)]
φX (k,m)

(31)

is the (normalized) interband correlation vector, x′
i,k(m) = xk(m) −

X(k, m)ρ X,k(m) is the interference signal vector, and

E
[

X∗(k,m)x′
i,k(m)

] = 0. (32)

We can estimate the desired signal as

X̂(k,m) = h′H
k (m)yk(m)

= X(k,m)h′H
k (m)ρ X,k(m)

+ h′H (m)x′ (m) + h′H (m)vk(m), (33)
k i,k k
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where h′
k(m) is a filter of length L = K −

k + K +
k + 1. Following the 

same steps as in Section 4, we easily derive the suboptimal MVDR 
filter:

h′
MVDR,k(m) = �−1

yk
(m)ρ X,k(m)

ρH
X,k(m)�−1

yk
(m)ρ X,k(m)

, (34)

where �yk (m) � E[yk(m)yH
k (m)] is the correlation matrix of yk(m).

6. Wiener filter using correlation among neighboring bands

The optimal Wiener filter can be considered as one of the 
most fundamental and widely used noise reduction approaches in 
the literature, which has been delineated in different forms and 
adopted in various applications. It has been shown that many 
methods such as the spectral subtraction [15,16] and the MMSE 
estimator [2] are closely related to this filter. With the bifrequency 
spectrum, the Wiener filter can be derived as in [8,19], i.e.,

h′
W,k(m) = �−1

yk
(m)�xk (m)iK −

k +1

= [
I − �−1

yk
(m)�vk (m)

]
iK −

k +1, (35)

where �yk (m) and �xk (m) are the correlation matrix of yk(m) and 
xk(m) respectively, as defined in Section 5, I is the identity matrix 
of size (K −

k + K +
k +1) ×(K −

k + K +
k +1), and iK −

k +1 is the (K −
k +1)th 

column of I.
The focus of this paper is on the MVDR filter. However, the 

Wiener filter will also be included in Section 8 for the purpose 
of comparison.

7. Performance measures

To facilitate the evaluation of the developed single-channel 
noise reduction MVDR filters based on the bifrequency spectrum, 
some performance measures are presented in this section.

Given the signal model in (1), we define the input SNR as the 
ratio of the variance of the desired signal over the variance of the 
background noise, i.e.,

iSNR = E[x2(t)]
E[v2(t)] . (36)

To quantify the level of noise remaining at the output of the 
noise reduction filter, we define the output SNR as the ratio of 
the variance of the filtered desired signal over the variance of the 
residual interference-plus-noise1:

oSNR = E[x2
fd(t)]

E{[xri(t) + vrn(t)]2} , (37)

where xfd(t), xri(t), and vrn(t) are the time-domain signals recon-
structed from Xfd(k, m), Xri(k, m), and V rn(k, m), respectively. One 
of the most important goals of noise reduction is to improve the 
SNR.

To quantify the distortion level of the filtered desired signal, 
we borrow the concept of the speech distortion index, which is 
defined as [7]

υsd � E{[xfd(t) − x(t)]2}
E[x2(t)] . (38)

The speech distortion index is always greater than or equal to 0. 
The higher the value of this index, the more the desired signal is 
distorted.

1 In this paper, we consider the uncorrelated interference as part of the noise in 
the definition of the performance measures.
Besides the above two performance metrics, we also use 
the perceptual-evaluation-of-speech-quality (PESQ) measure [27], 
which has been found to have higher correlations than other 
widely known objective measures, with the subjective ratings of 
overall quality of enhanced speech signal.

8. Simulations

In this section, we evaluate the MVDR filters developed in Sec-
tions 4 and 5 through simulations.

8.1. Signals and noise

In our simulations, the desired clean speech signal consists of 
two parts, one from a male talker and the other from a female 
talker, both are approximately 30-s long and sampled at 8 kHz. 
The noisy signal is generated by adding noise to the desired signal. 
The noise signal is then properly scaled to control the input SNR. 
We study four different types of noise, i.e., Gaussian, car, F-16 cock-
pit, and NYSE babble noise, which are representative noise samples 
from white and stationary to highly nonstationary. The computer-
generated Gaussian noise is white and stationary. The car noise is 
recorded from a sedan car running at 50 miles/hour on a highway 
(all the windows are closed); this noise is still close to stationary, 
but it is colored. The F-16 cockpit noise, taken from the Noisex92 
database [28], is recorded at the co-pilot’s seat in a two-seat F-16, 
traveling at a speed of 500 knots, and an altitude of 300–600 feet, 
which is colored and nonstationary. The babble noise is recorded 
in a New York Stock Exchange (NYSE) room; it consists of sounds 
from various sources such as speakers, telephone rings, electric 
fans, etc and is highly nonstationary.

8.2. Implementation of the MVDR and Wiener filters

The noise reduction filters are implemented using the over-
lap add technique. The overlap factor is always 75% between the 
neighboring frames. To overcome the aliasing problem, a Kaiser 
window is applied both before the analysis and after the resyn-
thesis steps.

8.3. Estimation of the statistics

To implement the MVDR filter in (34) [(24) is a particular case 
of (34)] and the Wiener filter in (35), we need to know the pa-
rameters �yk (m), �vk (m), and ρ X,k(m). In our simulations, we first 
assume that the noise signal is accessible and estimate �yk (m) and 
�vk (m) from the corresponding signals with a short-time average 
using the most recent N frames, i.e.,

�yk (m) = 1

N

N−1∑
i=0

yk(m − i)yH
k (m − i). (39)

The matrix �vk (m) is estimated in a similar way to �yk (m). An es-
timate of �xk (m) is computed by subtracting �vk (m) from �yk (m), 
i.e., �xk (m) = �yk (m) − �vk (m). Then, ρ X,k(m) is taken as the 
(K −

k + 1)th column of �xk (m) normalized by the (K −
k + 1)th el-

ement of this vector. To avoid numerical issues, the inverse of 
�yk (m) is computed as follows. We first compute the eigenvalue 
decomposition of �yk (m):

�yk (m) = Q(m)�yk (m)Q−1(m), (40)

where �yk (m) is a diagonal matrix whose diagonal elements corre-
spond to the eigenvalues of �yk (m), i.e., λi(m), i = 1, 2, . . . , K −

k +
K +

k + 1 and Q(m) is the eigenvector matrix. Then, the inverse of 
�y (m) is computed as
k
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Fig. 3. Signals (first 5 s) after noise reduction by the MVDR filter (in white Gaussian 
noise): (a) the enhanced signal, ̂x(t), (b) the filtered desired signal, xfd(t), (c) the 
residual interference, xri(t), and (d) the residual noise, vrn(t). iSNR = 10 dB, M =
128, Kk = 8, and N = 10.

�−1
yk

(m) = Q(m)�−1
yk

(m)Q−1(m), (41)

where �−1
yk

(m) is also a diagonal matrix whose ith diagonal ele-

ment, denoted as [�−1
yk

(m)]ii , is computed as

[
�−1

yk
(m)

]
ii =

{
λ−1

i (m), if λi(m) > min{αλ1(m), δ}
0, else

, (42)

where λ1(m) is the largest eigenvalue of �yk (m), α ∈ (0, 1) is 
a constant and δ > 0 is a regularization parameter. In our simu-
lations, these two parameters are empirically set to α = δ = 0.01.

8.4. Noise reduction performance as a function of the number of 
neighboring bands

In the first simulation, we set K −
k = K +

k = Kk and investigate 
the performance of the MVDR filter given in (34) as a function 
of Kk . The input SNR is 10 dB, the frame length (the same as the 
FFT size) is M = 128, and the number of frames, N , used for com-
puting the correlation matrices, varies between 2 and 40. We vary 
the value of Kk from 0 to 12. When Kk = 0, the MVDR filter be-
comes the identity filter, which does not change the noisy signal 
and, therefore, there is neither noise reduction nor speech distor-
tion. When Kk is greater than 0, the MVDR filter takes into account 
the interband correlation.

To visualize the noise reduction performance and also the sig-
nal decomposition used in the derivation of the MVDR filter, we 
plot in Fig. 3, the different signals (only the first 5 s) processed 
by this filter. It is clearly seen from this figure that the MVDR 
filter mitigates the noise significantly while maintaining the fil-
tered designed signal close to the original desired one. To examine 
the noise reduction performance, we computed the output SNR, 
i.e., oSNR, and the speech distortion index, i.e., υsd. The results, as 
a function of N and for different values of Kk , are presented in 
Fig. 4. The performance of the Wiener filter with Kk = 8 is also 
plotted for comparison. It is seen that the MVDR filter does not 
introduce much speech distortion since the value of the speech 
distortion index is very small. As for the output SNR, one can see 
that it improves when Kk increases, which proves the usefulness 
of the interband correlation in noise reduction. However, when Kk
Fig. 4. Performance of the MVDR filter as a function of N for different values of Kk

in white Gaussian noise. M = 128 and iSNR = 10 dB. For comparison, the perfor-
mance of the Wiener filter with Kk = 8 is also plotted.

is greater than 8, the additional performance gain as compared to 
that for Kk = 8 is not much while the complexity increase can be 
significant. This result justifies the superiority of the suboptimal 
MVDR over the optimal one. For a fixed value of Kk > 0, one can 
see that the output SNR first increases with N , and then decreases. 
The underlying reason can be explained as follows. If the value 
of N is too small, we cannot get a reliable estimation of the sig-
nal statistics, which affects the noise reduction performance. But if 
the value of N is too large, the estimated statistics cannot follow 
the time-varying properties of the speech signal, leading to perfor-
mance degradation. We see that the optimal value of N depends 
slightly on the value of Kk . But generally, good performance is 
achieved when N is around 8 in our simulation setup. The Wiener 
filter with Kk = 8 yields a higher output SNR than the MVDR fil-
ter; but the Wiener filter adds speech distortion as clearly seen in 
the figure.

8.5. Performance as a function of the frame length

In the second simulation, we study how the frame length, M
(in our implementation, we always take M = 2K − 2), affects the 
performance of the MVDR filter. Following the previous simula-
tion, we set iSNR = 10 dB, Kk = 8, and vary N from 2 to 40. 
Fig. 5 shows the noise reduction performance as a function of N
for different values of M . As we know, the spectral resolution and 
interband correlation are generally affected by the frame length. 
But the noise reduction performance only changes slightly with the 
frame length, as seen in Fig. 5. Note that in practical applications, 
we generally prefer to use a small frame length as this would in-
troduce less processing delay. Based on this result, we will set the 
frame length to 128 (i.e., 16 ms) in all the following simulations.

8.6. Performance in different types of noise and SNR conditions

In this simulation, we evaluate the MVDR filter in four different 
types of noise, i.e., Gaussian, car, F-16 cockpit, and NYSE babble. 
Following the previous simulations, we set Kk to 8, M to 128, and 
N to 10. Fig. 6 plots the output SNR and the speech distortion in-
dex of the MVDR filter, both as a function of the input SNR. It 
is seen that the performance of the MVDR filter in the different
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Fig. 5. Effect of the frame length, M , on the performance of the MVDR filter in white 
Gaussian noise. Kk = 8 and iSNR = 10 dB.

Fig. 6. Performance of the MVDR filter in different types of noise: white Gaussian, 
car, F-16 cockpit, and NYSE babble. N = 10, Kk = 8, and M = 128.

types of noise is quite similar, which is somewhat unexpected 
since nonstationary noise is in general more difficult to deal with. 
The underlying reason may be due to the fact that the noise statis-
tics are directly computed from the noise signal, thereby avoiding 
the statistics estimation error. In practical situations, however, the 
estimation error of noise statistics is unavoidable and would in-
crease as the noise becomes more nonstationary. This estimation 
error will subsequently be translated into either more speech dis-
tortion or less noise reduction. We will come back to this point 
later.

8.7. Speech quality evaluation with PESQ

In the previous simulations, we examined the output SNR 
and the speech distortion index, which provide some insight into 
the noise reduction performance of the filters. In this simula-
tion, we evaluate the quality of the enhanced speech through the 
perceptual-evaluation-of-speech-quality (PESQ) measure, which 
has been found to have higher correlation with the subjective rat-
ings of the overall quality of enhanced speech signal [27] than 
other widely known objective measures. In this simulation, we 
Fig. 7. The PESQ MOS-LQO scores of the noisy signal and the enhanced signal by 
the MVDR and Wiener filters in different types of noise: (a) white Gaussian, (b) car, 
(c) F-16 cockpit, and (d) NYSE babble. M = 128, Kk = 8, and N = 10.

use the PESQ MOS-LQO (listening quality objective) score same 
as in [24]. This score is computed in three steps. First, in a given 
noise and input SNR condition, the PESQ score is computed for 
each talker. The average PESQ score is then calculated. This aver-
age PESQ score is finally mapped to the PESQ MOS-LQO as follows:

PESQMOS-LQO = 0.999 + 4

1 + e−1.4945×PESQMOS + 4.6607
. (43)

The results of this simulation are shown in Fig. 7. For comparison, 
we also plotted the performance of the Wiener filter with Kk = 8. 
It is clearly seen that both the MVDR and the Wiener filters im-
prove the PESQ MOS-LQO in all the studied noise and input SNR 
conditions.

From Fig. 4, we observe that the output SNR of the Wiener 
filter is higher than that of the MVDR filter. However, it is seen 
that the MVDR filter produces a higher PESQ score. The underlying 
reason is that the PESQ score is affected by both noise reduction 
and speech distortion. While it produces a higher output SNR than 
the MVDR filter, the Wiener filter adds more speech distortion. As 
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Fig. 8. Results (first 5 s) of noise estimation by IMCRA: (a) waveform of the noisy 
signal, y(t); (b) magnitude square spectrum of the noisy signal (green dotted), 
smoothed magnitude square spectrum of the noisy signal (blue solid), and IMCRA 
noise estimate (red heavy solid) in the 20th frequency band; (c) spectrogram of the 
noisy signal; (d) spectrogram of the original noise signal; and (e) spectrogram of 
the estimated noise signal. The noisy signal is a clean speech from a female talker 
corrupted by a white Gaussian noise with iSNR = 10 dB. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

a results, the overall speech quality of the Wiener filter is not as 
good as that of the MVDR filter, as indicated by the PESQ score.

8.8. Performance with noise estimation

In the previous simulations, we assumed that the noise signal 
is accessible and its correlation matrix in every frequency band is 
computed with a short-time average using the most recent time 
frames. While it provides a fair way to evaluate the derived noise 
reduction filter and compare its performance to other techniques, 
this way of computing the noise statistics makes the implementa-
tion impractical. In reality, the noise signal is generally not acces-
sible and its spectrum has to be estimated from the noisy signal. 
Tremendous efforts have been devoted to this estimation prob-
lem and many useful methods have been developed. Representa-
tive ones include the recursive averaging algorithm [29,30], the 
minimum statistics tracking method [31,32], and the histogram-
based approach [17,33], etc. In this paper, we adopt the improved 
minima controlled recursive averaging (IMCRA) approach in [30], 
which has been proved to be able to provide a robust noise power 
spectrum estimation in a broad range of noise environments.

Fig. 8 presents an example of the noise estimation using the 
IMCRA method. Fig. 8(a) plots the waveform of the noisy sig-
nal. The noisy signal is a female speech contaminated by a white 
Gaussian noise with an input SNR of 10 dB. Fig. 8(b) shows the 
magnitude square spectrum of the noisy signal, i.e., |Y (k, m)|2, the 
smoothed magnitude square spectrum (smoothed using a single 
Fig. 9. Performance of the MVDR and Wiener filters (with IMCRA noise estimation) 
as a function of N for different values of Kk . iSNR = 10 dB and M = 128 in white 
Gaussian noise.

Fig. 10. Effect of the frame length, M , on the performance of the MVDR and Wiener 
filters (with IMCRA noise estimation) in white Gaussian noise. Kk = 8 and iSNR =
10 dB.

pole recursion with a smoothing factor of 0.9), and the noise spec-
trum estimated with the IMCRA approach in the 20th frequency 
band. Fig. 8(c), (d), and (e) plot the spectrograms of the noisy sig-
nal, the original noise signal, and the estimated noise signal with 
the IMCRA method. One can see that the IMCRA approach per-
forms well in estimating the noise spectrum and signal.

With the IMCRA noise estimation, we can now assess both the 
MVDR and the Wiener filters for their practical performance. The 
evaluation results in terms of the output SNR and the speech dis-
tortion index are plotted in Figs. 9–11.

Comparing Fig. 9 with Fig. 4, one can see that the MVDR 
and Wiener filters yield less SNR improvement after incorporating 
noise estimation. This is, of course, expected as any noise esti-
mation inevitably introduces some estimation error in the noise 



H. Huang et al. / Digital Signal Processing 33 (2014) 169–179 177
Fig. 11. Performance of the MVDR and Wiener filters (with IMCRA noise estimation) 
in different types of noise: white Gaussian, car, F-16 cockpit, and NYSE babble. N =
10, Kk = 8, and M = 128.

statistics, which causes degradation in noise reduction perfor-
mance. However, we can still see, from Fig. 9, that the MVDR filter 
improves the SNR significantly and meanwhile it preserves the de-
sired speech with little distortion.

Fig. 11 plots the performance of the MVDR and Wiener filters 
in four different types of noise. In a given SNR condition, both 
filters yield the largest output SNR in white Gaussian noise and 
the smallest output SNR in the (highly nonstationary) NYSE babble 
noise. This is understandable as it is more difficult to estimate the 
statistics if the noise is nonstationary.

The PESQ evaluation results are plotted in Fig. 12. As seen, both 
the MVDR and Wiener filters improve the speech quality, as in-
dicated by the PESQ MOS-LQO score. This, again, illustrates the 
importance of using the interband correlation in noise reduction. 
In comparison, the MVDR filter does a better job in improving 
speech quality than the Wiener filter since the former does not 
add speech distortion into the enhanced signal.

In some scenarios, if the application can tolerate some speech 
distortion but requires more noise reduction, one can achieve this 
by simply combining the MVDR and Wiener filters together, i.e., 
perform noise reduction using the MVDR filter first and then ap-
ply the Wiener to the output of the MVDR filter. This combination 
may provide at least two benefits. First, it should yield more noise 
reduction, thereby further improving the SNR. Second, it provides 
a better way for the Wiener filter to estimate the noise statis-
tics since the MVDR filter would significantly improve the SNR as 
shown in the previous simulations. The results of this combination 
are also plotted in Fig. 12. One can see that combining the two fil-
ters can further improve speech quality as compared to the use of 
Fig. 12. PESQ MOS-LQO of the noisy signal and the enhanced signals by the MVDR 
and Wiener filters in four different types of noise: white Gaussian, car, F-16 cockpit, 
and NYSE babble. M = 128, Kk = 8, and N = 10.

only MVDR filter, though the improvement is not significant. The 
reason that the quality improvement is not significant is due to 
the fact that the second-stage Wiener filter introduces speech dis-
tortion as it achieves noise reduction and the quality improvement 
is a compromise between the amount of noise reduction and the 
degree of speech distortion. Nevertheless, this combination gives 
another option for tradeoff between noise reduction and speech 
distortion. Many other filters can be used together with the MVDR 
filter.

8.8.1. Computational complexity
It can be checked that the computational complexity of the 

MVDR and Wiener filters is a function of the filter length L
(L = 2Kk + 1, Kk is the number of the neighboring frequency 
bins). In this section, we analyze the computational complexity of 
these two filters in terms of the number of real-valued multiplica-
tions/divisions (the number of additions/subtractions are neglected 
because they are much quicker to compute in most generic hard-
ware platforms). We assume that complex-valued multiplications 
are transformed into real-valued multiplications. The multiplica-
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tion between a real number and complex number requires 2 real-
valued multiplications. The multiplication between two complex 
numbers needs 4 real-valued multiplications. The division between 
a complex number and a real number requires 2 real-valued multi-
plications [34]. The results are summarized in Table 1. It is easy to 
see that the computational complexity of both filters increases L.

In comparison, the MVDR filter requires slightly more multipli-
cations than the Wiener filter; but the difference is negligible with 
today’s DSP processors.

Table 1
Computational complexity of the MVDR and Wiener filters in terms of the required 
number of multiplications.

Parameters:
L = 2Kk + 1: length of the MVDR and Wiener filters
Kk: number of the neighboring frequency bins for the MVDR and Wiener filters

Algorithm steps Required (real-valued) 
multiplications

• Estimation of �yk (m) and �vk (m) (with 
short-time average)

8L2

• Computing �−1
yk

(m) (with Gauss–Jordan 
elimination method [35])

4L3

• Computing h′
MVDR,k(m) in (34) 4L2 + 6L

• Computing h′
W,k(m) in (35) 4L2

• Computing ̂X(k, m) 4L

• Total multiplications of the MVDR filter 4L3 + 12L2 + 10L
• Total multiplications of the Wiener filter 4L3 + 12L2 + 4L

9. Conclusions

This paper dealt with the problem of single-channel noise re-
duction in the STFT domain. Unlike the traditional methods that 
achieve noise reduction using only a gain and neglect the inter-
band correlation information, the approach taken here exploits this 
information. The concept of bifrequency spectrum was introduced 
in this context. Noise reduction is then recast in the STFT domain 
as a filtering problem based on the bifrequency spectrum. Two 
versions of the MVDR filter were then deduced; one uses the in-
terband correlation among all the STFT frequency bands while the 
other employs the correlation between only the neighboring bands. 
While the first version is optimal from a theoretical viewpoint, it 
is not robust. The second version is suboptimal, but is much more 
practical. A large number of simulations were carried out to evalu-
ate the MVDR noise reduction filter with the noise spectrum being 
either directly computed from the noise signal or estimated from 
the noisy signal. The results showed that the developed MVDR fil-
ter can significantly improve the SNR while preserving the desired 
signal without much distortion. Moreover, it was also shown that 
the MVDR filter can dramatically improve the PESQ score in all the 
studied types of noise and SNR conditions.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.dsp.2014.06.008.
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