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This paper develops a multistage approach to the implementation of the minimum variance

distortionless response (MVDR) beamformer. It first divides the microphone array of M sensors

into M/2 subarrays with each subarray having only two microphones, and a two-channel MVDR

beamformer is performed with each subarray. The M/2 subarrays’ outputs are then treated as the

inputs of M/4 subarrays of two channels in the next stage. Similarly, a two-channel MVDR

beamformer is performed with each subarray in the second stage. This process is repeated till the

last stage that has only a single output. This multistage MVDR beamformer has the following

properties: (1) Its performance is identical to that of the conventional MVDR beamformer in

spatially uncorrelated noise; (2) it is much more robust than the conventional MVDR beamformer

in diffuse noise, i.e., it has a significantly higher white noise gain as compared to the traditional

MVDR beamformer; and (3) its complexity is an order of magnitude smaller than that of the

traditional MVDR beamformer. This basic principle can also be easily generalized to the case

where every subarray has more than two microphones. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4913459]

[MRB] Pages: 1377–1388

I. INTRODUCTION

The minimum variance distortionless response (MVDR)

beamformer, originally developed by Capon (1969), has

been widely studied in the context of noise reduction and

speech enhancement with microphone arrays to extract the

speech signal of interest and reduce the unwanted noise. The

robust and efficient implementation of this beamformer,

however, is not a trivial task because the correlation matrices

of the noise and noisy signals that need to be inverted are

usually ill-conditioned. If not handled properly, this ill-

conditioning issue can cause numerical instabilities of the

MVDR beamformer, which may lead to significant white

noise amplification. A great deal of effort has been devoted

to circumventing this issue, which can be categorized into

two classes: Diagonal loading (DL) and robust adaptation

structure.

The basic idea of DL is to add a small positive constant

to the diagonal elements of the noise or noisy correlation

matrix, making it better conditioned (Li et al., 2003;

Carlson, 1988). This is equivalent to adding some amount of

white Gaussian noise to the array observations. The critical

issue with this technique is the choice of the proper value of

the loading parameter. On the one hand, the ill-conditioning

issue would remain if the loading constant is too small, and

on the other hand, the array directivity may degrade signifi-

cantly if the loading constant is too large. In the context of

noise reduction with wideband speech signals, diagonal

loading may cause the array to have a different response

from one frequency to another; this will be perceived as

speech distortion. Another equivalent method to diagonal

loading is the so-called dominant mode rejection (DMR)

method (Cox and Pitre, 1998; Kogon, 2004). The basic idea

is to determine the dominant eigenvalues of the noise or

noisy correlation matrices. Then either the pseudoinverse is

used to replace the direct inverse (Pan et al., 2014) or the

beamformer can be reformulated to reject noise at the space

spanned by the eigenvectors corresponding to the dominant

eigenvalues. Similar to the DL method, the DMR technique

also suffers from directivity degradation.

The robustness of the MVDR beamformer may also be

slightly improved through the use of a different, robust adap-

tation structure. It is well known that the generalized side-

lobe canceller (GSC) converts the constrained optimization

problem in the linear constrained minimum variance

(LCMV) beamformer into an unconstrained one (Griffiths

and Jim, 1982; Gannot et al., 2001). While they are theoreti-

cally identical (Breed and Strauss, 2004), the GSC may be

slightly more robust than the LCMV in implementation.

Because it is a particular case of the LCMV (Frost, 1972),

the MVDR beamformer can be implemented with the GSC

structure. Another way to implement the MVDR beam-

former is through the iterative method developed in (Pados

and Karystinos, 2001), where the MVDR filter is iteratively

updated from a matched filter combined with a filter that is

orthogonal to the matched filter. Similar to the GSC, this

iterative method avoids the direct computation of matrix
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inversion, and it can converge to the MVDR beamformer in

theory. However, this method was found sensitive to the esti-

mation error of the correlation matrix, particularly in low

frequencies, where the correlation matrix is generally ill-

conditioned. Moreover, the computational complexity of this

algorithm is high.

In this paper, we develop a multistage MVDR beam-

former as illustrated in Fig. 1. Briefly, we first divide the

microphone array of M sensors into M/2 subarrays where ev-

ery subarray has only two microphones. A two-channel

MVDR beamformer is performed with each subarray. The

M/2 subarrays’ outputs are then treated as the inputs of the

second stage with M/4 subarrays of two channels. Similarly,

a two-channel MVDR beamformer is performed with each

subarray in the second stage. This process is repeated till the

last stage that has two inputs and only a single output. We

will present the theoretical analysis of this multistage

MVDR beamformer and show that this approach has many

appealing properties including: (1) Its performance is identi-

cal to that of the conventional MVDR beamformer in spa-

tially uncorrelated noise; (2) it has significantly higher white

noise gain in diffuse noise, meaning that it is much more ro-

bust than the conventional MVDR beamformer though its

array gain is slightly smaller; and (3) its complexity is an

order of magnitude smaller than that of the conventional

MVDR beamformer. This basic principle can also be easily

generalized to the case where every subarray has more than

two microphones. As the number of sensors in each subarray

increases, the performance behavior of the multistage

MVDR beamformer gets closer to the conventional one; but

the robustness decreases while the complexity increases.

The rest of this paper is organized as follows. In Sec. II,

the general signal model in the frequency domain is pre-

sented. Section III discusses the conventional MVDR beam-

former. In Sec. IV, the multistage MVDR beamformer is

derived, and the corresponding complexity is analyzed.

Section V presents some important performance metrics for

the evaluation of the conventional and multistage MVDR

beamformers. Then Sec. VI studies the performance of the

multistage MVDR beamformer in different scenarios and

compares it to that of the conventional MVDR beamformer.

Finally, some conclusions are provided in Sec. VII.

II. SIGNAL MODEL

We consider the well-accepted room acoustics signal

model in which an M-element microphone array captures a

convolved source signal in some noise field. The received

signals, at the time index t, are expressed as (Benesty et al.,
2008; Brandstein and Ward, 2001)

ymðtÞ ¼ gmðtÞ � sðtÞ þ tmðtÞ
¼ xmðtÞ þ tmðtÞ; m ¼ 1; 2;…;M; (1)

where gm(t) is the impulse response from the unknown

speech source s(t) to the mth microphone, � stands for linear

convolution, and vm(t) is the additive noise at microphone m.
We assume that the signals xm(t)¼ gm(t) � s(t) and vm(t) are

uncorrelated and zero mean. By definition, the signals xm(t),
m¼ 1, 2,…, M are coherent. The noise components, vm(t),
m¼ 1, 2,…, M, however, are assumed not to be completely

coherent. All previous signals are considered to be real and

broadband.

In this paper, our desired signal is designated by the

clean (but convolved) speech signal received at microphone

1, namely, x1(t). It should be noted that any other micro-

phone could be considered as the reference. Our problem

then may be stated as follows Benesty et al. (2008): Given

the M observation signals ym(t), m¼ 1, 2,…, M, our aim is to

extract x1(t). This extraction should be done in such a way

that the signal of interest is not much distorted (ideally

undistorted) while the noise terms, vm(t), m¼ 1, 2,…, M, are

minimized at the array output.

Expression (1) can be written in the frequency domain,

at the frequency index f, as

Ymðf Þ ¼ Gmðf ÞSðf Þ þ Vmðf Þ
¼ Xmðf Þ þ Vmðf Þ; m ¼ 1; 2;…;M; (2)

where Ym(f), Gm(f), S(f), Xm(f)¼Gm(f)S(f), and Vm(f) are the

frequency-domain representations of ym(t), gm(t), s(t), xm(t),
and vm(t), respectively.

To derive the MVDR filter, it is more convenient to

write the M frequency-domain microphone signals in a vec-

tor form as
FIG. 1. (Color online) Schematic diagrams of the conventional and multi-

stage MVDR beamformers.
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yðf Þ ¼ gðf ÞSðf Þ þ vðf Þ
¼ xðf Þ þ vðf Þ
¼ dðf ÞX1ðf Þ þ vðf Þ; (3)

where

y fð Þ¢
�
Y1 fð Þ Y2 fð Þ � � � YM fð Þ

�T
;

g fð Þ¢
�
G1 fð Þ G2 fð Þ � � � GM fð Þ

�T
;

x fð Þ¢
�
X1 fð Þ X2 fð Þ � � � XM fð Þ

�T
¼ S fð Þ

�
G1 fð Þ G2 fð Þ � � � GM fð Þ

�T
¼ S fð Þg fð Þ;

v fð Þ¢
�
V1 fð Þ V2 fð Þ � � � VM fð Þ

�T
;

d fð Þ¢ g fð Þ
G1 fð Þ ;

and superscript T denotes transpose of a vector or a matrix.

The vector d(f) is called the steering vector or direction vec-

tor because it determines the direction of the (desired) signal

X1(f). For a uniform linear array and when the source is in

the farfield, in an anechoic environment, and arrives at the

array with an incidence angle of hd, the steering vector d(f)
can be written as

dðf Þ ¼ ½1 e�|2pf s0 cos hd � � � e�|ðM�1Þ2pf s0 cos hd �T ; (4)

where s0¼ d/c is the delay between two successive sensors

at the angle hd¼ 0�, d is the sensor spacing, and c is the

sound velocity in air.

From Eq. (3), we easily deduce the correlation matrix of

y(f), which is

Uyðf Þ¢E½yðf ÞyHðf Þ�
¼ Uxðf Þ þUvðf Þ
¼ /X1

ðf Þdðf ÞdHðf Þ þUvðf Þ; (5)

where E[�] is the mathematical expectation, the superscript

H denotes the conjugate-transpose operator, /Xm
ðf Þ

¢E½jXmðf Þj2� is the variance of Xm(f), m¼ 1, 2,…, M, and

Ux(f) ¢ E [x(f)xH(f)] and Uv(f)¼E[v(f)vH(f)] are the corre-

lation matrices of x(f) and v(f), respectively. The M�M ma-

trix Uy(f) is the sum of two other matrices: The signal

correlation matrix with rank of 1 and the noise correlation

matrix, which is assumed to be full rank.

III. ARRAY MODEL AND THE CONVENTIONAL MVDR
BEAMFORMER

The conventional frequency-domain beamforming is

performed by applying a complex weight to the output of

each sensor and then summing the results together, i.e.,

Zðf Þ ¼
XM

m¼1

H�mðf ÞYmðf Þ

¼ hHðf Þyðf Þ
¼ X1ðf ÞhHðf Þdðf Þ þ hHðf Þvðf Þ
¼ Xfdðf Þ þ Vrnðf Þ; (6)

where the superscript * is the complex-conjugation operator,

Z(f) is supposed to be the estimate of X1(f),

hðf Þ¢
�
H1ðf Þ H2ðf Þ � � � HMðf Þ

�T

is a filter of length M containing all the complex gains

applied to the microphone outputs, Xfd(f)¼X1(f)hH(f)d(f) is

the filtered desired signal, and Vrn(f)¼h
H(f)v(f) is the resid-

ual noise.

The two terms on the right-hand side of Eq. (6) are inco-

herent. Hence the variance of Z(f) is also the sum of two

variances

/Zðf Þ ¼ hHðf ÞUyðf Þhðf Þ
¼ /Xfd

ðf Þ þ /Vrn
ðf Þ; (7)

where /Xfd
ðf Þ¼/X1

ðf ÞjhH(f)d(f)j2 and /Vrn
ðf Þ

¼ hH(f)Uv(f)h(f).
Minimizing the variance of the array output or the var-

iance of the residual noise with the constraint that

hH(f)d(f)¼ 1 leads to the conventional MVDR beamformer

(Capon, 1969; Lacoss, 1971),

hCMVDR fð Þ ¼ U�1
v fð Þd fð Þ

dH fð ÞU�1
v fð Þd fð Þ

¼
U�1

y fð Þd fð Þ
dH fð ÞU�1

y fð Þd fð Þ
: (8)

In practice, Ux(f) is rarely a rank-one matrix; as a result, esti-

mating d(f) is very challenging, which would cause signifi-

cant performance degradation of the filter. In Benesty et al.
(2008), the MVDR filter is rewritten as

hCMVDR fð Þ ¼
U�1

v fð ÞUy fð Þ � IM

tr U�1
v fð ÞUy fð Þ

h i
�M

iM; (9)

where tr[�] is the trace of a square matrix, IM is the identity

matrix of size M�M, and iM is the first column of IM. The

two versions of the MVDR filter in Eqs. (8) and (9) are theo-

retically identical, yet the MVDR filter in Eq. (9) is more

practical than that in Eq. (8) as it can be evaluated from the

statistics of the noise and noisy signal vectors v(f) and y(f)
that can be observable. We see from Eq. (9) that the M�M
correlation matrix Uv(f) needs to be inverted, and this inver-

sion may cause some problems to the estimation of the

desired signal if this matrix is ill-conditioned. Furthermore,

the inversion of large matrices is not always possible in real-

time systems.

From now on, we will drop the subscript CMVDR from

all variables to simplify the notation and make the presenta-

tion concise. Substituting Eq. (8) into Eqs. (6) and (7), we

find that

Zðf Þ ¼ X1ðf Þ þ Vrnðf Þ (10)

and

/Zðf Þ ¼ /X1
ðf Þ þ /Vrn

ðf Þ; (11)
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where

Vrn fð Þ ¼ dH fð ÞU�1
v fð Þv fð Þ

dH fð ÞU�1
v fð Þd fð Þ

;

/Vrn
fð Þ ¼ 1

dH fð ÞU�1
v fð Þd fð Þ

;

with /Vm
ðf Þ¼E [jVm(f)j2] being the variance of Vm(f),

m¼ 1, 2,…, M. It can be shown that the signal estimate Z(f)
from Eq. (10) is less noisy than Y1(f)¼X1(f)þV1(f). Indeed,

according to the Cauchy–Schwarz inequality, we have

jdHðf ÞiMj2 � ½iT
MUvðf ÞiM� � ½dHðf ÞU�1

v ðf Þdðf Þ�:

Because of the facts that iT
MUvðf ÞiM ¼ /V1

ðf Þ and

dH(f)iM¼ 1, we deduce that /Vrn
ðf Þ � /V1

ðf Þ.
Interestingly, Z(f) can be seen as a new observation sig-

nal from microphone 1, which is less noisy than the original

observation. This observation is used in Sec. IV to derive a

multistage beamforming algorithm with matrix dimensions

much smaller than and independent of M.

IV. MULTISTAGE MVDR BEAMFORMER

A. Derivation

In the previous section, we showed how to estimate

X1(f) with no distortion from all the observations, Ym(f),
m¼ 1, 2,…, M, to form Z(f), which can also be seen as a less

noisy observation than Y1(f). However, in the implementa-

tion of the conventional MVDR beamformer, a matrix of

size M�M needs to be inverted at every frequency. It is

well known that this matrix may not be well conditioned,

and, as a result, the larger is M the less reliable is the algo-

rithm for noise reduction. Furthermore, such an algorithm is

computationally expensive to implement in the context of

noise reduction as many matrices of size M�M have to be

inverted every few milliseconds. In this section, we propose

a new approach where only vectors of length 2 and matrices

of size 2� 2 are handled at N successive stages with

N¼ log M/log 2. In total, the proposed algorithm computes

M � 1 ¼ 2N � 1 two-channel MVDR filters. In the first

stage, 2N�1 two-channel MVDR filters are evaluated, in the

second stage, 2N�2, and so on, till the last stage with 20.

Let us first form pairs of microphone signals, from

which we form the two-dimensional observation vectors

z
ð0Þ
i ðf Þ ¼

�
Y2i�1ðf Þ Y2iðf Þ

�T
¼ diðf ÞXiðf Þþ v

ð0Þ
i ðf Þ; i¼ 1;2;…;M=2; (12)

where

v
ð0Þ
i ðf Þ ¼ ½V2i�1ðf Þ V2iðf Þ�T

and

di fð Þ ¼ G2i�1 fð Þ
Gi fð Þ

G2i fð Þ
Gi fð Þ

� �T

:

At stage 1, the output signals of the M/2 beamformers are

Z
ð1Þ
i ðf Þ ¼ h

ð0ÞH
i ðf Þzð0Þi ðf Þ

¼ Xiðf Þ þ h
ð0ÞH
i ðf Þvð0Þi ðf Þ

¼ Xiðf Þ þ V
ð1Þ
i ðf Þ; i ¼ 1; 2;…;M=2; (13)

where Z
ð1Þ
i ðf Þ are the estimates of Xi(f), i¼ 1, 2,…, M/2 at

stage 1 (that will become the new observations for the next

stage), h
ð0Þ
i ðf Þ¼

�
H
ð0Þ
2i�1 H

ð0Þ
2i

�T
are the MVDR filters (of

length 2) corresponding to the estimates Z
ð1Þ
i ðf Þ, i.e.,

h
0ð Þ

i fð Þ ¼
U�1

v
0ð Þ

i

fð Þdi fð Þ

dH
i fð ÞU�1

v
0ð Þ

i

fð Þdi fð Þ

¼
U�1

z
0ð Þ

i

fð Þdi fð Þ

dH
i fð ÞU�1

z
0ð Þ

i

fð Þdi fð Þ
; (14)

or, alternatively,

h
0ð Þ

i fð Þ ¼ Gi fð Þ
G2i�1 fð Þ �

U�1

v
0ð Þ

i

fð ÞU
z

0ð Þ
i

fð Þ � I

tr U�1

v
0ð Þ

i

fð ÞU
z

0ð Þ
i

fð Þ
h i

� 2
i; (15)

I is the 2� 2 identity matrix, i is the first column of I,

U
v
ð0Þ
i

ðf Þ ¼ E½vð0Þi ðf Þv
ð0ÞH
i ðf Þ�; (16)

U
z
ð0Þ
i

ðf Þ ¼ /Xi
ðf Þdiðf ÞdH

i ðf Þ þU
v
ð0Þ
i

ðf Þ; (17)

and

V 1ð Þ
i fð Þ ¼ h

0ð ÞH
i fð Þv 0ð Þ

i fð Þ

¼
dH

i fð ÞU�1

v
0ð Þ

i

fð Þv 0ð Þ
i fð Þ

dH
i fð ÞU�1

v
0ð Þ

i

fð Þdi fð Þ
(18)

being the residual noise at stage 1 for the new observation

Z
ð1Þ
i ðf Þ.

The transfer function ratio in Eq. (15) can be rewritten

as

Gi fð Þ
G2i�1 fð Þ ¼

E X�2i�1 fð ÞXi fð Þ
� �
E jX2i�1 fð Þj2
h i

¼
E Y�2i�1 fð ÞYi fð Þ
� �

� E V�2i�1 fð ÞVi fð Þ
� �

E jY2i�1 fð Þj2
h i

� E jV2i�1 fð Þj2
h i ;

(19)

which can be estimated from the statistics of the noisy and

noise signals in practice.

The variance of Z
ð1Þ
i ðf Þ is

/
Z
ð1Þ
i

ðf Þ ¼ /Xi
ðf Þ þ /

V
ð1Þ
i

ðf Þ; (20)

where
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/
V 1ð Þ

i

fð Þ ¼ 1

dH
i fð ÞU�1

v
0ð Þ

i

fð Þdi fð Þ

and

/
V
ð1Þ
i

ðf Þ � /
V
ð0Þ
i

ðf Þ:

At stage 2, we form the new two-dimensional observation

vectors as

z
ð1Þ
i ðf Þ ¼

h
Z
ð1Þ
2i�1ðf Þ Z

ð1Þ
2i ðf Þ

iT

¼ diðf ÞXiðf Þ þ v
ð1Þ
i ðf Þ; i¼ 1;2;…;M=4; (21)

where

v
ð1Þ
i ðf Þ ¼

h
V
ð1Þ
2i�1ðf Þ V

ð1Þ
2i ðf Þ

iT

:

We then proceed as before to estimate Z
ð2Þ
i ðf Þ.

Therefore the general procedure at any stage, n¼ 1,

2,…, N, is

Z
ðnÞ
i ðf Þ ¼ h

ðn�1ÞH
i ðf Þzðn�1Þ

i ðf Þ
¼ Xiðf Þ þ h

ðn�1ÞH
i ðf Þvðn�1Þ

i ðf Þ
¼ Xiðf Þ þ V

ðnÞ
i ðf Þ; i ¼ 1; 2;…; 2N�n; (22)

where

z
ðn�1Þ
i ðf Þ ¼

h
Z
ðn�1Þ
2i�1 ðf Þ Z

ðn�1Þ
2i ðf Þ

iT

¼ diðf ÞXiðf Þ þ v
ðn�1Þ
i ðf Þ; (23)

v
ðn�1Þ
i ðf Þ ¼

h
V
ðn�1Þ
2i�1 ðf Þ V

ðn�1Þ
2i ðf Þ

iT

; (24)

and

h
n�1ð Þ

i fð Þ ¼ Gi fð Þ
G2i�1 fð Þ �

U�1

v
n�1ð Þ

i

fð ÞU
z

n�1ð Þ
i

fð Þ � I

tr U�1

v
n�1ð Þ

i

fð ÞU
z

n�1ð Þ
i

fð Þ
h i

� 2
i;

(25)

V
nð Þ

i fð Þ ¼ h
n�1ð ÞH

i fð Þv n�1ð Þ
i fð Þ

¼
dH

i fð ÞU�1

v
n�1ð Þ

i

fð Þv n�1ð Þ
i fð Þ

dH
i fð ÞU�1

v
n�1ð Þ

i

fð Þdi fð Þ
; (26)

U
v
ðn�1Þ
i

ðf Þ ¼ E½vðn�1Þ
i ðf Þvðn�1ÞH

i ðf Þ�; (27)

U
z
ðn�1Þ
i

ðf Þ ¼ /Xi
ðf Þdiðf ÞdH

i ðf Þ þU
v
ðn�1Þ
i

ðf Þ: (28)

B. Implementation

For clarity, we stack the noise signals at the nth stage

into a vector

vðnÞðf Þ ¼
h
V
ðnÞ
1 ðf Þ V

ðnÞ
2 ðf Þ � � � V

ðnÞ
2N�nðf Þ

iT

; (29)

and define the corresponding correlation matrix

UvðnÞ ðf Þ¢E½vðnÞðf ÞvðnÞHðf Þ�: (30)

After the derivation of the filters at the nth stage, the correla-

tion matrix of the noise signals at the (nþ 1)th stage can be

expressed as

Uvðnþ1Þ ðf Þ ¼ HðnÞðf ÞUvðnÞ ðf ÞHðnÞHðf Þ; (31)

where

HðnÞðf Þ ¼

h
ðnÞH
1 01�2 � � � 01�2

01�2 h
ðnÞH
2 � � � 01�2

..

. ..
. . .

. ..
.

01�2 01�2 � � � h
ðnÞH
2N�n�1

2
666664

3
777775
; (32)

which consists of the filters at the nth stage and is a matrix

of size 2N�n�1� 2N�n.

In Table I, we illustrate the multistage algorithm. From

this table, the final array output can be written as

ZðNÞðf Þ ¼ hH
MMVDRðf Þyðf Þ; (33)

where

hMMVDRðf Þ ¼ Hð0ÞHðf ÞHð1ÞHðf Þ � � �HðN�1ÞHðf Þ; (34)

which is the multistage MVDR beamformer. The corre-

sponding residual noise variance can be expressed as

/Vrn
ðf Þ ¼ hH

MMVDRðf ÞUvðf ÞhMMVDRðf Þ: (35)

TABLE I. Multistage MVDR beamformer.

Multistage MVDR beamformer

Inputs:

Uvð0Þ ðf Þ ¼ Uvðf Þ, which is the correlation matrix of the noise.

z(0)(f)¼ y(f), which is the observation signal vector.

Filtering:

for n¼ 0, 1,…, N � 1

for i¼ 1, 2,…, 2N�n�1

U
v
ðnÞ
i

ðf Þ ¼ ½UvðnÞ ðf Þ�2i�1:2i;2i�1:2i

h
ðnÞ
i ðf Þ ¼

U�1

v
ðnÞ
i

ðf Þdiðf Þ

dH
i ðf ÞU�1

v
ðnÞ
i

ðf Þdiðf Þend

HðnÞðf Þ ¼

h
ðnÞH
1 01�2 � � � 01�2

01�2 h
ðnÞH
2 � � � 01�2

..

. ..
. . .

. ..
.

01�2 01�2 � � � h
ðnÞH
2N�n�1

2
666664

3
777775

z(nþ1) (f)¼H(n) (f)z(n) (f)

Uvðnþ1Þ ðf Þ ¼ HðnÞðf ÞUvðnÞ ðf ÞHðnÞHðf Þ
End

Outputs:

Z
ðNÞ
1 (f)¼ z(N) (f), which is the estimate of the desired signal.

/
V
ðNÞ
1

ðf Þ ¼ UvðNÞ ðf Þ, which is the variance of the residual noise.
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Because the conventional MVDR beamformer is the best

linear filter that minimizes the variance of the residual

noise, and both the conventional and multistage MVDR

beamformers lie on the same hyperplane, hH(f)d(f)¼ 1, we

deduce that the multistage MVDR beamformer is identical

to the conventional one if their residual noise variances are

equal.

In Table II, we show the complexity of the multistage

MVDR beamformer, where “Mul,” “Add,” and “Div” denote

multiplication, addition, and division, respectively. It is well

known that the complexity of the conventional MVDR

beamformer at every frequency is OðM3Þ while that of the

multistage MVDR beamformer is only OðM2Þ as seen from

Table II. So, the multistage MVDR beamformer is computa-

tionally much more efficient than its conventional counter-

part, particularly when M is large.

V. PERFORMANCE MEASURES

Because microphone 1 is chosen as the reference, the

performance measures for all approaches are defined with

respect to this microphone.

We define the narrowband input signal-to-noise ratio

(SNR) as the variance of the desired signal at frequency f
over the variance of the noise at frequency f, i.e.,

iSNR fð Þ ¼
/X1

fð Þ
/V1

fð Þ : (36)

The broadband input SNR, which is a measure of the SNR

across the entire frequency range, is defined as

iSNR ¼

ð
f

/X1
fð Þdf

ð
f

/V1
fð Þdf

: (37)

The output SNR helps quantify the level of noise

remaining at the beamformer output signal. With the con-

ventional MVDR approach, the narrowband output SNR at

frequency f is

oSNR fð Þ ¼
/Xfd

fð Þ
/Vrn

fð Þ ¼ /X1
fð Þ � dH fð ÞU�1

v fð Þd fð Þ:

(38)

It is easy to check that the broadband output SNR is

oSNR ¼

ð
f

/X1
fð Þdf

ð
f

/Vrn
fð Þdf

: (39)

The role of the beamformer is to produce a signal with a

higher SNR in comparison with the observed signal.

The amount of SNR improvement is measured by the so-

called array gain Johnson and Dudgeon (1993). With the

conventional MVDR filter, the narrowband array gain at

frequency f is

A fð Þ ¼ oSNR fð Þ
iSNR fð Þ ¼ /V1

fð Þ � dH fð ÞU�1
v fð Þd fð Þ (40)

and the broadband array gain is

A ¼ oSNR

iSNR
¼

ð
f

/V1
fð Þdf

ð
f

/Vrn
fð Þdf

: (41)

From Benesty et al. (2008) and Souden et al. (2010) we

know that

oSNRðf Þ 	 iSNRðf Þ; (42)

which leads to

/Vrn
ðf Þ � /V1

ðf Þ (43)

and

Aðf Þ 	 1: (44)

Integrating both sides of Eq. (43) over all frequencies, we

get

ð
f

/Vrn
ðf Þdf �

ð
f

/V1
ðf Þdf ; (45)

which implies that

A 	 1 (46)

and

oSNR 	 iSNR: (47)

With the proposed multistage MVDR beamformer, the

narrowband output SNR at frequency f and stage n is defined

as

oSNR nð Þ fð Þ ¼
/X1

fð Þ
/

V
nð Þ

1

fð Þ

¼ /X1
fð Þ � dH

1 fð ÞU�1

v
n�1ð Þ

1

fð Þd1 fð Þ: (48)

The broadband output SNR at stage n is

TABLE II. Computational complexity of the multistage MVDR

beamformer.

Variable Complexity Number

h
ðnÞ
i ðf Þ 8Mulþ 3Addþ 1Div

XN�1

n¼0

2N�n�1 ¼ M � 1

½Uvðnþ1Þ ðf Þ�i;j 6Mulþ 3Add

1

2

XN�2

n¼0

ð2N�n�1Þ2 þ 2N�n�1
h i

¼ 1

6
M2 þ 3M � 10Þ
�

h
ðnÞH
i ðf ÞzðnÞi ðf Þ 2Mulþ 1Add

XN�1

n¼0

2N�n�1 ¼ M � 1
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oSNR nð Þ ¼

ð
f

/X1
fð Þdf

ð
f

/
V

nð Þ
1

fð Þdf
: (49)

We easily deduce the narrowband and broadband array gains

at stage n,

A nð Þ fð Þ ¼ oSNR nð Þ fð Þ
iSNR fð Þ

¼ /V1
fð Þ � dH

1 fð ÞU�1

v
n�1ð Þ

1

fð Þd1 fð Þ; (50)

A nð Þ ¼ oSNR nð Þ

iSNR
¼

ð
f

/V1
fð Þdf

ð
f

/
V

nð Þ
1

fð Þdf
: (51)

It is clear that the multistage MVDR beamformer corre-

sponds to N successive two-channel MVDR beamformers.

The output of the (n � 1)th beamformer is the input of the

nth beamformer. Therefore the output SNR of the (n � 1)th

beamformer is the input SNR of the nth beamformer. From

this observation and from Eq. (42), we then deduce that

oSNRðnÞðf Þ 	 iSNRðnÞðf Þ ¼ oSNRðn�1Þðf Þ: (52)

Hence

oSNRðNÞðf Þ	 � � � 	 oSNRð1Þðf Þ	 oSNRð0Þðf Þ¼ iSNRðf Þ
(53)

and

AðNÞðf Þ 	 � � � 	 Að1Þðf Þ 	 1: (54)

We draw the same conclusions for the broadband measures,

i.e.,

oSNRðNÞ 	 � � � 	 oSNRð1Þ 	 oSNRð0Þ ¼ iSNR; (55)

AðNÞ 	 � � � 	 Að1Þ 	 1: (56)

We can express the narrowband output SNR at stage n as

oSNR nð Þ fð Þ ¼
/X1

fð Þ
/

V n�1ð Þ
1

fð Þ �
/

V n�1ð Þ
1

fð Þ
/

V
nð Þ

1

fð Þ

¼ oSNR n�1ð Þ fð Þ
/

V n�1ð Þ
1

fð Þ
/

V
nð Þ

1

fð Þ : (57)

The previous equation leads to

oSNR Nð Þ fð Þ ¼ iSNR fð Þ
/V1

fð Þ
/

V Nð Þ
1

fð Þ : (58)

As a result,

A Nð Þ fð Þ¼
/V1

fð Þ
/

V Nð Þ
1

fð Þ: (59)

It is also easy to verify that

A Nð Þ ¼

ð
f

/V1
fð Þdf

ð
f

/
V Nð Þ

1

fð Þdf
: (60)

The two previous expressions show how the the array gains

depend on the variance of the noise at the reference micro-

phone (before processing) and the variance of the residual

noise at the last stage (after processing).

VI. PERFORMANCE STUDY

A. Performance in spatially uncorrelated noise

In this case, the correlation matrix of the noise at the nth

stage is a diagonal one, i.e.,

UvðnÞ ðf Þ ¼ diag½/
V
ðnÞ
1

ðf Þ;/
V
ðnÞ
2

ðf Þ;…;/
V
ðnÞ
2N�n

ðf Þ�; (61)

where /
V
ðnÞ
i

ðf Þ¢E½jVðnÞi ðf Þj
2� is the variance of the residual

noise of the ith channel at the nth stage. Its inverse, from

Sec. IV, satisfies

/�1

V
nð Þ

i

fð Þ ¼ G2i�1 fð Þ
Gi fð Þ

����
����
2

/�1

V n�1ð Þ
2i�1

fð Þ þ G2i fð Þ
Gi fð Þ

����
����
2

/�1

V n�1ð Þ
2i

fð Þ:

(62)

From this equation, we deduce that

/�1

V Nð Þ
1

fð Þ ¼ /�1

V N�1ð Þ
1

fð Þ þ G2 fð Þ
G1 fð Þ

����
����
2

/�1

V N�1ð Þ
2

fð Þ

¼ /�1

V N�2ð Þ
1

fð Þ þ G2 fð Þ
G1 fð Þ

����
����
2

/�1

V N�2ð Þ
2

fð Þ

þ G3 fð Þ
G1 fð Þ

����
����
2

/�1

V N�2ð Þ
3

fð Þ þ G4 fð Þ
G1 fð Þ

����
����
2

/�1

V N�2ð Þ
4

fð Þ

..

.

¼
X2N

i¼1

Gi fð Þ
G1 fð Þ

����
����
2

/�1

V 0ð Þ
i

fð Þ

¼
X2N

i¼1

Gi fð Þ
G1 fð Þ

����
����
2

/�1
Vi

fð Þ: (63)

Clearly, the variances of the conventional and multistage

MVDR beamformers are identical in the spatially uncorre-

lated noise and so are the two beamformers.

Substituting Eq. (63) into Eq. (59), we deduce the array

gain

A Nð Þ fð Þ ¼ /V1
fð Þ
X2N

i¼1

Gi fð Þ
G1 fð Þ

����
����
2

/�1
Vi

fð Þ

¼
/V1

fð Þ
/X1

fð Þ
X2N

i¼1

/Xi
fð Þ

/Vi
fð Þ

¼ 1

iSNR1 fð Þ
X2N

i¼1

iSNRi fð Þ; (64)
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where iSNRi(f)¼/Xi
ðf Þ=/Vi

ðf Þ, i¼ 1, 2,…, M is the input

SNR at the ith microphone. If the input SNRs at different

sensors are the same, the array gain A(N)(f) is M.
Substituting Eq. (64) into Eq. (50), we find that

oSNRðNÞðf Þ ¼
X2N

i¼1

iSNRiðf Þ; (65)

which is the sum of the input SNRs over all sensors.

B. Performance in diffuse noise

If we are in the presence of the spherically isotropic

(diffuse) noise field (Jacobsen, 1979; Goulding, 1989;

Benesty et al., 2007), its correlation matrix has the following

form:

Uvðf Þ ¼ /V1
ðf ÞCdnðf Þ; (66)

where Cdn(f) is the pseudo-coherence matrix of the noise the

(i, j)th element of which is

Cdn fð Þ½ �i;j ¼ sinc 2pf di;j=c
� �

¢
sin 2pfdi;j=c
� �
2pf di;j=c

; (67)

with di,j being the distance between the ith and jth sensors.

The conditioning of this matrix depends on both the fre-

quency and sensor spacing. To illustrate this, let us consider

a uniform linear array consisting of eight microphones with

a two-centimeter sensor spacing. Figure 2 plots the eigenval-

ues of Cdn(f) as a function of frequency. Apparently, this ma-

trix is very ill-conditioned in low frequencies because it has

some very small eigenvalues in this case. So in low frequen-

cies, the conventional MVDR beamformer may suffer from

numerical problems, leading to significant sensor noise

amplification. A very important metric to evaluate sensor

noise amplification of a beamformer is the so-called white

noise gain, which is defined as

Awn fð Þ¢ 1

hH fð Þh fð Þ
; (68)

where h(f) is the corresponding beamforming filter. If we

assume that the desired source is in the farfield, in an

anechoic environment, and arrives at the array from the end-

fire direction, i.e., hd¼ 0�, we can write the steering vector

according to Eq. (4). Then we can obtain both the array gain

and white noise gain of the conventional and multistage

MVDR beamformers by substituting Eq. (8) into Eqs. (40)

and Eq. (68) and Eq. (34) into Eqs. (59) and (68). Figure 3

plots the array gain and white noise gain for both the con-

ventional and multistage MVDR beamformers with a uni-

form linear array of eight sensors in diffuse noise. It is seen

from Fig. 3 that in high frequencies the conventional MVDR

beamformer achieves an array gain of approximately 18 dB.

This corroborates with the theoretical analysis that the maxi-

mum gain of the MVDR beamformer in diffuse noise is M2

(Uzkov, 1946). However, the array gain of the conventional

MVDR beamformer is not stable in low frequencies mainly

due to the ill-conditioning of the noise correlation matrix.

While it achieves a great gain in reducing diffuse noise, the

conventional MVDR beamformer also suffers from signifi-

cant white noise amplification, which can be clearly seen in

Fig. 3(b). In comparison, the multistage approach has less

FIG. 2. (Color online) Eigenvalues of the diffuse noise pseudo-coherence

matrix as a function of frequency with an eight-element uniform linear array

(d¼ 2 cm).

FIG. 3. (Color online) Performance of the conventional and multistage

MVDR beamformers with an eight-element uniform linear array (d¼ 2 cm):

(a) Array gain and (b) white noise gain.
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array gain, but it is significantly better in dealing with white

noise amplification.

The performance of the MVDR beamformer, no mat-

ter how it is implemented, depends on the source inci-

dence angle as shown in Pan et al. (2014). Figure 4 plots

the array gain as a function of the frequency and source

incidence angle of both the conventional and multistage

MVDR beamformers with an eight-sensor uniform linear

array in diffuse noise. It is clearly seen that the maximum

gain is achieved when the source is in the endfire direc-

tions while minimum gain occurs when the source is inci-

dent from the broadside, i.e., hd¼ 90�. When the source is

at the broadside, the array gain of the conventional

MVDR beamformer does not change much with fre-

quency. However, the multistage MVDR beamformer has

less array gain as the frequency decreases. Indeed, when

hd¼ 90�, the array gain of the multistage algorithm can be

written as

A Nð Þ fð Þ ¼ M2

XM�1

m¼� M�1ð Þ
M � jmjð Þsinc 2pfmd=cð Þ

: (69)

One can check that

AðNÞðf Þ ¼ 1; f ! 0

M; f !1:

	
(70)

So there is not much SNR improvement with respect to dif-

fuse noise when the frequency is very low. The underlying

reason is that the multistage MVDR beamformer attempts to

improve the white noise amplification problem by sacrificing

some performance gain in dealing with diffuse noise, as

shown in Fig. 5, where the white noise gain of the multistage

MVDR beamformer is much larger than that of its conven-

tional counterpart.

Like the array gain, the white noise gains of the conven-

tional and multistage MVDR beamformers are also a func-

tion of frequency and source incidence angle as seen in Fig.

5. Apparently, the white noise gain of the conventional

MVDR beamformer decreases dramatically with frequency

for a given source incidence angle; but at a few angles, the

white noise gain is much larger than that at most other fre-

quencies. This phenomenon is explained in the Appendix. In

comparison, the white noise gain of the multistage MVDR

beamformer is quite flat and does not change much with the

source incidence angle.

FIG. 4. (Color online) Array gain of the conventional and multistage

MVDR beamformers as a function of frequency and source incidence angle

with an eight-element uniform linear array (d¼ 2 cm): (a) Conventional

beamformer and (b) multistage beamformer.

FIG. 5. (Color online) White noise gain of the conventional and multistage

MVDR beamformers as a function of frequency and source incidence angle

with an with-element uniform linear array (d¼ 2 cm): (a) Conventional

beamformer and (b) multistage beamformer.
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C. Performance with different number of sensors

The number of sensors plays an important role in the

array performance. Figure 6 plots the array gain and white

noise gain of the multistage MVDR beamformer with a uni-

form linear array, as a function of frequency, for different

values of M in diffuse noise and hd¼ 0�. It is seen that the

array gain increases with the number of sensors while the

white noise gain seems not to change much. This indeed

shows the robustness of the multistage MVDR beamformer

from another perspective.

It is seen that when the number of sensors is increased

from two to four, the array gain is improved by approximately

3 dB. However, when the number of sensors is large, doubling

the number of sensors gives a gain improvement less than 3 dB.

To explain this, we plot in Fig. 7 the level distribution of the

residual noise at different stages. It can be seen that the energy

of the noise concentrates more and more on the desired source

direction as the stage is increased, and as a result, it is more dif-

ficult to reduce diffuse noise from one stage to the next.

D. Performance with different subarray structures

In both the theoretical analysis and previous perform-

ance study, we divided the microphone array into subarrays

of two microphones each. This idea can be easily general-

ized to the general case where each subarray has L micro-

phones with L�M. When L¼M, the multistage approach

degenerates to the conventional MVDR beamformer.

Generally, as the value of L increases, the array gain of the

multistage MVDR beamformer gets closer to that of the con-

ventional MVDR beamformer; but it has more white noise

amplification just like the conventional MVDR beamformer.

To illustrate this, we use a uniform linear array with 16

microphones and spacing of 2 cm. We consider two cases:

(1) Each subarray consists of two microphones and (2) each

subarray consists of four microphones. The results are plot-

ted in Fig. 8. It is clearly seen that the array gain with respect

to diffuse noise increases if the subarray uses more micro-

phones; but its has more white noise amplification as com-

pared to the case with less microphones.

VII. CONCLUSIONS

In this paper, we developed a multistage MVDR beam-

former. Unlike the conventional MVDR beamformer that

forms the beamforming filter using all the sensors at once, this

multistage approach first divides the microphone array of M
sensors into M/2 subarrays with each subarray having only

FIG. 6. (Color online) Performance of the multistage MVDR beamformer

with a uniform linear array (d¼ 2 cm) for different values of M.

FIG. 7. (Color online) The noise spatial distribution of the multistage

MVDR beamformer with a uniform linear array, 16 sensors, d¼ 2 cm, and

hd¼ 0�: (a) First stage, (b) second stage, (c) third stage, and (d) fourth stage.
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two microphones. A two-channel MVDR beamformer is per-

formed with every subarray. The M/2 subarrays’ outputs are

then treated as the inputs of M/4 subarrays of two channels in

the next stage. Similarly, a two-channel MVDR beamformer

is performed with each subarray in the second stage. This pro-

cess is repeated till the last stage that has only a single output.

Through both theoretical analysis and simulations, we showed

that this multistage MVDR beamformer has following appeal-

ing properties. First, the array performance gradually increases

from one stage to the next. Second, after the final stage, the

performance of this multistage approach is identical to that of

the conventional MVDR beamformer in spatially white noise.

Third, it is much more robust than the conventional MVDR

beamformer in diffuse noise (it has significant higher white

noise gain). Moreover, its complexity is an order of magnitude

smaller than that of the conventional MVDR beamformer. We

also showed that the basic principle in this paper can be easily

generalized to the case where every subarray has more than

two microphones. In this case, the performance behavior of

the multistage MVDR beamformer gets closer to the conven-

tional one as the number of sensors in each subarray increases;

but the robustness decreases while the complexity increases.
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APPENDIX

In this appendix, we show that for a uniform linear array

with M sensors in diffuse noise, the white noise gain at any

particular frequency is a function of the source incidence

angle hd, and it generally has M � 1 local maxima for hd

� [0, 180�).
The white noise gain of the conventional MVDR filter

in diffuse noise can be written into the following form based

on Eqs. (8), (66), and (68):

Awn fð Þ ¼ jd
Hðf ÞC�1

dn ðf Þdðf Þj
2

dHðf ÞC�2
dn ðf Þdðf Þ

: (A1)

Using the eigenvalue decomposition, Cdn(f) can be

decomposed as

Cdnðf Þ ¼ UKUH; (A2)

where

K ¼ diag ½k1; k2; …; kM� (A3)

is a diagonal matrix consisting of all the eigenvalues of

Cdn(f) with k1	 k2	 � � � 	 kM> 0, and

U ¼
�
u1 u2 � � � uM

�
(A4)

consists of the corresponding eigenvectors. Using these

eigenvectors, one can rewrite the steering vector d(f) into the

following form:

dðf Þ ¼
XM

m¼1

ffiffiffiffiffiffi
km

p
fmðcos hdÞe|/m um; (A5)

where

fm cos hdð Þ ¼ 1ffiffiffiffiffiffi
km

p uH
md f Þe�|/m ;
�

(A6)

is called the eigen pattern of the beamformer, and /m is

a phase to make fm(cos hd) a real function. It follows then that

Awnðf Þ ¼
j½UHdðf Þ�HK�1½UHdðf Þ�j2

½UHdðf Þ�HK�2½UHdðf Þ�

¼

XM

m¼1

fm cos hdð Þj j2
�����

�����
2

XM

m¼1

k�1
m jfm cos hdð Þj2

¼ kM

XM

m¼1

jfm cos hdð Þj2
�����

�����
2

jfm cos hdð Þj2 þ
XM�1

m¼1

kM

km
fm cos hdð Þj j2

: (A7)

Because kM is the smallest eigenvalue of Cdn and it is much

smaller than the other eigenvalues when M is reasonably

large, we generally have

jfM cos hdð Þj2 

XM�1

m¼1

kM

km
jfm cos hdð Þj2; (A8)

FIG. 8. (Color online) Performance of the multistage MVDR beamformer

with a uniform linear array (d¼ 2 cm) and two subarray structures.
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which can be seen from Fig. 9. Consequently, with a given

frequency, the white noise gain of the conventional MVDR

beamformer in diffuse noise reaches its local maxima when

fM(cos hd) reaches its local minima, as illustrated in Fig. 9.

This also corroborates the results shown in Fig. 5.
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