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Differential microphone arrays have the potential to be widely deployed in hands-free

communication systems thanks to their frequency-invariant beampatterns, high directivity factors,

and small apertures. Traditionally, they are designed and implemented in a multistage way with

uniform linear geometries. This paper presents an approach to the design of differential microphone

arrays with orthogonal polynomials, more specifically with Jacobi polynomials. It first shows how

to express the beampatterns as a function of orthogonal polynomials. Then several differential

beamformers are derived and their performance depends on the parameters of the Jacobi

polynomials. Simulations show the great flexibility of the proposed method in terms of designing

any order differential microphone arrays with different beampatterns and controlling white noise

gain. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4927690]

[MRB] Pages: 1079–1089

I. INTRODUCTION

Microphone arrays have been intensively studied for

processing audio and speech signals in acoustic environ-

ments. Because audio and speech signals are broadband in

nature and their frequencies range from a few hertz to more

than 20 kHz, it is necessary for the arrays to have uniform

spatial responses at different frequencies; otherwise, distor-

tion is added to either the signal of interest or noise, resulting

in disturbing artifacts at the arrays’ output (Ward et al.,
1998). Significant efforts have been devoted to the design of

microphone arrays with uniform spatial responses over the

last two decades. Many methods have been developed that

can be broadly classified into three categories: nested arrays,

broadband beamforming, and differential beamforming with

differential microphone arrays (DMAs).

A nested array consists of a few subarrays with each

operating at a small frequency range (Elko and Meyer, 2008;

Chou, 1995). By adjusting the number of sensors and the

spacing in each subarray, the global array can be controlled

to have a constant beamwidth over the entire frequency

range of interest. Although it is possible to achieve a con-

stant beamwidth, a nested array generally requires a large

number of microphones and a large array geometry. Another

way to achieve constant beamwidth is through narrowband

decomposition, leading to the so-called broadband beam-

forming (Doclo and Moonen, 2003; Benesty et al., 2007;

Elko and Meyer, 2008). Basically, the array signals are

decomposed into multiple subbands. A narrowband beam-

former is then designed in each subband with a constraint

applied to control the beamwidth so that all the beamformers

from different subbands can have the same beamwidth.

Although it can make constant beamwidth across a wide

range of frequencies, this way of broadband beamforming

suffers from two prominent drawbacks: (1) the resulting

beampatterns, particularly the sidelobes, still vary signifi-

cantly from one frequency to another, which can cause tre-

mendous distortion to the background and noise signals, and

(2) it sacrifices the array gain at high frequencies.

In comparison, differential beamforming is perhaps the

only approach so far that can achieve frequency-invariant

beampatterns. Furthermore differential beamforming can

achieve the maximal directional gains given the number of

microphones and with a small DMA aperture (Elko and

Meyer, 2008; Benesty and Chen, 2012). As a result, this type

of beamforming has attracted much attention recently.

Differential beamformers can be designed in a multistage

manner (Elko and Meyer, 2008) or by solving a linear sys-

tem determined by the nulls in the desired DMA beampat-

tern (Benesty and Chen, 2012). It is well known that

differential beamforming is sensitive to the sensors’ location

perturbations and other errors in the array system (Buck,

2002). In Benesty and Chen (2012), a null-constrained

approach is developed to the design of robust differential

beamformers by increasing the number of sensors for a fixed

DMA order and exploiting the redundancy to maximize thea)Electronic mail: jingdongchen@ieee.org
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white noise gain (WNG). In Chen et al. (2014), a similar

approach with nulls with multiplicity of more than one is

presented.

Another way to design DMAs is by approximating the

beampattern of the beamformer with some series expansions

where the basic idea started with circular and spherical

eigenbeamforming (Mathews and Zoltowski, 1994; Meyer,

2001; Rafaely, 2005; Yan et al., 2011). Some initial work

has already been presented recently, for example, in Zhao

et al. (2014), where DMAs are designed using the

MacLaurin’s series approximation. In this paper, we propose

a general way to design DMAs with orthogonal polynomials,

which is more general than the early works in Zhao et al.
(2014). We will show that the proposed design methods

have more flexibility in compromising among WNG, direc-

tivity factor (DF), and frequency-invariant beampattern.

The organization of this paper is as follows. In Sec. II,

we present the signal model and some important definitions.

In Sec. III, we show how to express the beampatterns with

orthogonal polynomials. In Sec. IV, we derive four DMA

beamforming filters: non-robust, robust, constant beampat-

tern (CP), and regularized CP. In Sec. V, we present the

Jacobi polynomials and the corresponding properties. In Sec.

VI, we evaluate the performance of the filters developed

with the Jacobi polynomials. Finally, some conclusions are

presented in Sec. VII.

II. SIGNAL MODEL, PROBLEM FORMULATION, AND
DEFINITIONS

A. Signal model

We consider a farfield desired source signal that propa-

gates from the azimuth angle, h, in an anechoic acoustic

environment at the speed of sound, i.e., c ¼ 340 m/s, and

impinges on a uniform linear array consisting of M omnidir-

ectional microphones. The angular frequency is denoted by

x ¼ 2pf , where f> 0 is the temporal frequency. In this con-

text, if we neglect the relative propagation loss from the

source to the different microphones, the observation signal

vector of length M can be expressed in the frequency domain

as (Benesty et al., 2008)

yðxÞ ¼ ½ Y1ðxÞ Y2ðxÞ � � � YMðxÞ �T

¼ xðxÞ þ vðxÞ
¼ dðx; cos hÞXðxÞ þ vðxÞ; (1)

where YmðxÞ is the mth microphone signal, the superscript T

is the transpose operator, xðxÞ ¼ dðx; cos hÞXðxÞ; XðxÞ is

the desired source signal, vðxÞ is the additive noise signal

vector,

dðx; cos hÞ ¼ ½ 1 e�ixs0 cos h � � � e�iðM�1Þxs0 cos h �T

(2)

is the phase-delay vector of length M (its form is the same as

the steering vector used in traditional beamforming), i

¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, and s0 ¼ d=c is the delay

between two successive sensors at the angle h¼ 0, with d
being the interelement spacing.

To ensure that differential beamforming takes place, the

following two assumptions are made (Elko, 2000; Elko and

Meyer, 2008; Benesty and Chen, 2012):

(1) The sensor spacing, d, is much smaller than the acoustic

wavelength, k ¼ c=f , i.e., d� k (this implies that

xs0 � 2p). This assumption is required so that the true

acoustic pressure differentials can be approximated by fi-

nite differences of the microphones’ outputs.

(2) The desired source signal propagates from the angle

h¼ 0� (endfire direction). Therefore Eq. (1) becomes

yðxÞ ¼ dðx; 1ÞXðxÞ þ vðxÞ; (3)

and, at the endfire, the value of the beamformer’s beam-

pattern should always be equal to 1 (or maximal).

B. Problem of beamforming

Beamforming is a process to estimate the desired signal,

XðxÞ, from the array observations, yðxÞ, given in Eq. (1)

through linear filtering (Benesty et al., 2008), i.e.,

ZðxÞ ¼
XM

m¼1

H�mðxÞYmðxÞ

¼ hHðxÞyðxÞ
¼ hHðxÞdðx; 1ÞXðxÞ þ hHðxÞvðxÞ; (4)

where ZðxÞ is the estimate of the desired signal, XðxÞ,

hðxÞ ¼ ½H1ðxÞ H2ðxÞ � � � HMðxÞ �T (5)

is a complex-valued linear filter applied to the observation

signal vector, yðxÞ, and the superscripts * and H denote

complex conjugation and conjugate-transpose, respectively.

In our context, the distortionless constraint is desired. So we

should have

hHðxÞdðx; 1Þ ¼ 1: (6)

The objective of beamforming is to find an optimal beam-

forming filter, hðxÞ, under some criteria so that ZðxÞ is a

good estimate of XðxÞ.

C. Important definitions of performance measures

Signal-to-noise ratio (SNR) is one of the most important

measures of the goodness of a beamformer. If we take

microphone 1 as the reference and assume that the variances

of all the sensors’ noises are the same, we can define the

input signal-to-noise ratio (iSNR) as

iSNR xð Þ ¼ /X xð Þ
/V1

xð Þ ; (7)

where /XðxÞ ¼ E½jXðxÞj2� and /V1
ðxÞ ¼ E½jV1ðxÞj2� are

the variances of XðxÞ and V1ðxÞ, respectively, with E½��
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denoting mathematical expectation. The output signal-to-

noise ratio (oSNR) is defined as

oSNR h xð Þ½ � ¼ /X xð Þ jh
H xð Þd x; 1ð Þj2

hH xð ÞUv xð Þh xð Þ

¼ /X xð Þ
/V1

xð Þ �
jhH xð Þd x; 1ð Þj2

hH xð ÞCv xð Þh xð Þ
; (8)

where UvðxÞ ¼ E½vðxÞvHðxÞ� and CvðxÞ ¼ UvðxÞ=/V1
ðxÞ

are the correlation and pseudo-coherence matrices of vðxÞ,
respectively. The definition of the gain in SNR is easily

derived from the previous definitions, i.e.,

G h xð Þ½ � ¼ oSNR h xð Þ½ �
iSNR xð Þ

¼ jh
H xð Þd x; 1ð Þj2

hH xð ÞCv xð Þh xð Þ
: (9)

The most convenient way to evaluate the sensitivity of

the array to some of its imperfections is via the so-called

WNG (Cox et al., 1987; Yan and Ma, 2005; Mabande et al.,
2009), which is defined by taking CvðxÞ ¼ IM in Eq. (9),

where IM is the M�M identity matrix, i.e.,

W h xð Þ½ � ¼ jh
H xð Þd x; 1ð Þj2

hH xð Þh xð Þ
: (10)

It is easy to check that the conventional delay-and-sum (DS)

beamformer (Benesty et al., 2008)

hDS xð Þ ¼ d x; 1ð Þ
M

; (11)

maximizes the WNG, i.e.,

W½hDSðxÞ� ¼ Wmax ¼ M: (12)

Another important measure is the DF. Considering the

spherically isotropic noise (sometime also called diffuse

noise, meaning that the noise has an energy of equal proba-

bility from all directions) field, the DF is defined as

D h xð Þ½ � ¼ jh
H xð Þd x; 1ð Þj2

hH xð ÞCd xð Þh xð Þ
; (13)

where the elements of the M�M matrix CdðxÞ are

Cd xð Þ½ �i;j ¼
sin x j� ið Þs0½ �

x j� ið Þs0

¼ sinc x j� ið Þs0½ �; (14)

with ½CdðxÞ�m;m ¼ 1; m ¼ 1; 2;…;M. It can be checked that

the superdirective beamformer (Cox et al., 1986; Cox et al.,
1987),

hSD xð Þ ¼ C�1
d xð Þd x; 1ð Þ

dH x; 1ð ÞC�1
d xð Þd x; 1ð Þ

; (15)

maximizes the DF, i.e.,

D½hSDðxÞ� ¼ DmaxðxÞ ¼ dHðx; 1ÞC�1
d ðxÞdðx; 1Þ: (16)

Because it maximizes the DF, the superdirective beamformer

is often called the supergain beamformer in the literature. It

can be shown that (Uzkov, 1946)

lim
d!0
DmaxðxÞ ¼ M2: (17)

III. BEAMPATTERNS

The beampattern or directivity pattern describes the sen-

sitivity of the beamformer to a plane wave (source signal)

impinging on the array from the direction h. For a uniform

linear array, it is mathematically defined as

B½hðxÞ; cos h� ¼ dHðx; cos hÞhðxÞ

¼
XM

m¼1

HmðxÞeiðm�1Þxs0 cos h

¼
XM

m¼1

HmðxÞe-m cos h; (18)

where -m ¼ iðm� 1Þxs0.

This paper is concerned with differential beamforming

with DMAs, which is able to achieve frequency-invariant

beampatterns. If omnidirectional sensors are used, the

frequency-invariant beampattern of an Nth-order DMA can

be expressed as (Elko, 2000; Benesty and Chen, 2012)

BNðcos hÞ ¼
XN

n¼0

an cosnh; (19)

where h 2 ½0; p� and an; n ¼ 0; 1;…;N are real coefficients.

The different values of these coefficients determine the dif-

ferent beampatterns of the Nth-order DMA. Assuming that

aN 6¼ 0; BNðcos hÞ can be expressed as an algebraic polyno-

mial of order N by taking x ¼ cos h, we get

BNðxÞ ¼
XN

n¼0

anxn; (20)

where x 2 ½�1; 1�. There are other ways to express Eq. (19)

or, equivalently Eq. (20), as suggested in Abhayapala and

Gupta (2010). In what follows, we derive a general form that

is based on orthogonal polynomials.

Let PnðxÞ be a polynomial of degree n, i.e., deg½PnðxÞ�
¼ n. A sequence of polynomials fPnðxÞg1n¼0 with

deg½PnðxÞ� ¼ n for each n is called orthogonal with respect

to the weight function w(x) on the interval ½�1; 1� if

(Chihara, 2011)ð1

�1

wðxÞPmðxÞPnðxÞdx ¼ Pndm;n; (21)

where Pn 6¼ 0 is a constant and

dm;n ¼
0; m 6¼ n
1; m ¼ n:

�
(22)

The weight function, w(x), should be defined on the interval

½�1; 1� with wðxÞ > 0 8x 2 ½�1; 1�, so that
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ð1

�1

wðxÞdx > 0: (23)

The orthogonal polynomials fP0ðxÞ;P1ðxÞ;…;PNðxÞg
are linearly independent and, thus, form a basis for all poly-

nomials of degree N. Therefore, every polynomial of degree

N can be uniquely expressed as a linear combination of the

orthogonal polynomials (Chihara, 2011). So, we can rewrite

Eq. (20) as

BNðxÞ ¼
XN

n¼0

bnPnðxÞ; (24)

where

bn ¼

ð1

�1

w xð ÞBN xð ÞPn xð Þdxð1

�1

w xð ÞP2
n xð Þdx

; n ¼ 0; 1;…;N: (25)

Let f(x) be a continuous function in ½�1; 1�. Its series

expansion in terms of fPnðxÞg1n¼0 is

f ðxÞ ¼
X1
n¼0

anPnðxÞ; (26)

where

an ¼

ð1

�1

w xð Þf xð ÞPn xð Þdxð1

�1

w xð ÞP2
n xð Þdx

; n ¼ 0; 1; 2;…: (27)

In particular, we have

e-mx ¼
X1
n¼0

bnð-mÞPnðxÞ; (28)

where

bn -mð Þ ¼

ð1

�1

w xð Þe-mxPn xð Þdxð1

�1

w xð ÞP2
n xð Þdx

; n¼ 0;1;2;…: (29)

Substituting Eq. (28) into Eq. (18), we get

B½hðxÞ; x� ¼
XM

m¼1

HmðxÞe-mx

¼
XM

m¼1

HmðxÞ
X1
n¼0

bnð-mÞPnðxÞ

¼
X1
n¼0

PnðxÞ
XM

m¼1

bnð-mÞHmðxÞ
" #

¼
X1
n¼0

PnðxÞbT
n ðxÞhðxÞ; (30)

where

bnðxÞ ¼ ½ bnð-1Þ bnð-2Þ � � � bnð-MÞ �T : (31)

If we limit the expansion to the order N, B½hðxÞ; x� can be

approximated by

BN½hðxÞ; x� ¼
XN

n¼0

PnðxÞbT
n ðxÞhðxÞ: (32)

In Sec. IV, we will see how to design DMAs of any

order using the previous expression.

IV. DMA DESIGN

In this section, we discuss how to design frequency-

invariant beampatterns with DMAs. We divide the general

design issue into two cases. The first case is concerned with

the scenario where the number of microphones in the DMA

is equal to the order of the DMA plus 1. The resulting beam-

formers are called non-robust ones as they may greatly suffer

from white noise amplification, particularly at low frequen-

cies. The second case discusses the situation where the num-

ber of microphones in the DMA is greater than the order of

the DMA plus 1. The resulting beamformers are called ro-

bust beamformers as they have less white noise amplification

as compared to those in the first category.

A. Non-robust

In the non-robust case, we have M ¼ N þ 1, which is

the condition that all the conventional DMAs are used. We

would like to find the filter hðxÞ in such a way that

BM�1½hðxÞ; x� is an Nth-order frequency-invariant beampat-

tern, i.e.,

BM�1½hðxÞ; x� ¼ BM�1ðxÞ: (33)

By simple identification between Eqs. (32) and (24), we eas-

ily find that

BðxÞhðxÞ ¼ b; (34)

where

BðxÞ ¼

bT
0 ðxÞ

bT
1 ðxÞ

..

.

bT
M�1ðxÞ

2
666666664

3
777777775

(35)

is an M�M matrix, and

b ¼ ½ b0 b1 � � � bM�1 �T (36)

is a vector of length M containing the coefficients of the Nth-

order frequency-invariant DMA beampattern. Assuming that

BðxÞ is a full-rank matrix, we find that the non-robust filter is

1082 J. Acoust. Soc. Am. 138 (2), August 2015 Pan et al.



hNRðxÞ ¼ B�1ðxÞb; (37)

where the subscript NR stands for “non-robust.”

Ideally, we would like to find the orthogonal polyno-

mials fP0ðxÞ;P1ðxÞ;…;PM�1ðxÞg that can give a good com-

promise between WNG and DF.

B. Robust

In the robust scenario, the number of microphones is

greater than the DMA order plus 1, i.e., M > N þ 1. Again,

we would like to find the filter hðxÞ in such a way that

BN½hðxÞ; x� is an Nth-order frequency-invariant beampattern,

i.e.,

BN½hðxÞ; x� ¼ BNðxÞ: (38)

By simple identification, we easily find that

B0ðxÞhðxÞ ¼ b; (39)

where

B0ðxÞ ¼

bT
0 ðxÞ

bT
1 ðxÞ

..

.

bT
NðxÞ

2
666666664

3
777777775

(40)

is now an ðN þ 1Þ �M matrix. Assuming that B0HðxÞ is a

full column rank matrix and taking the minimum-norm solu-

tion of Eq. (39), we find that the robust filter is

hRðxÞ ¼ B0HðxÞ½B0ðxÞB0HðxÞ��1
b; (41)

where the subscript R stands for “robust.”

The choice of the orthogonal polynomials is important

in practice in order to better design a desired beampattern.

C. Constant beampattern

In this subsection, we discuss how to design beamform-

ers with a frequency-invariant beampattern or constant

beampattern for short.

We define the square norm of B½hðxÞ; x� with respect to

the weight function w(x) as

kB h xð Þ; x½ �k2
w ¼

1

P0

ð1

�1

w xð ÞjB h xð Þ; x½ �j2dx

¼ hH xð ÞCw xð Þh xð Þ; (42)

where

Cw xð Þ ¼ 1

P0

ð1

�1

w xð Þd x; xð ÞdH x; xð Þdx: (43)

To design a constant beampattern, we can minimize

kB½hðxÞ; x�k2
w subject to Eq. (39), i.e.,

min
hðxÞ

hHðxÞCwðxÞhðxÞ subject to B0ðxÞhðxÞ ¼ b;

(44)

which actually minimizes the beampattern error in the

weighted least-squares (WLS) sense; see the proof in

Appendix A. We easily find that the solution is

hCPðxÞ ¼ C�1
w ðxÞB0HðxÞ
� ½B0ðxÞC�1

w ðxÞB0HðxÞ�
�1

b; (45)

where the subscript CP stands for “constant beampattern.”

To better compromise with white noise amplification,

we can use the following regularized CP beamformer

hCP;�ðxÞ ¼ C�1
w;�ðxÞB0HðxÞ
� ½B0ðxÞC�1

w;�ðxÞB0HðxÞ�
�1

b; (46)

where

Cw;�ðxÞ ¼ CwðxÞ þ �IM; (47)

with � 	 0 being the regularization parameter. It is clear that

hCP;0ðxÞ ¼ hCPðxÞ. Now, if we rearrange Cw;�ðxÞ as

Cw;�ðxÞ ¼ �½ð1=�ÞCwðxÞ þ IM� and then substitute this into

Eq. (46), we can find that hCP;1ðxÞ ¼ hRðxÞ.

V. JACOBI POLYNOMIALS

The Jacobi polynomials (Chihara, 2011), Pði;|Þn ðxÞ, are a

class of classical orthogonal polynomials that are orthogonal

with respect to the weight function wði;|ÞðxÞ ¼ ð1� xÞið1
þxÞ| on the interval ½�1; 1�, i.e.,ð1

�1

wði;|ÞðxÞPði;|Þm ðxÞPði;|Þn ðxÞdx ¼ Pndm;n; (48)

where

Pn ¼
2iþ|þ1

2nþ iþ |þ 1
� C nþ iþ 1ð ÞC nþ |þ 1ð Þ

n!C nþ iþ |þ 1ð Þ ;

(49)

with Cð�Þ being the Gamma function. The parameters i and |
are real numbers, which are restricted to i; | > �1, for inte-

grability purposes. Many well known orthogonal polyno-

mials such as Legendre, Chebyshev, and Gegenbauer can be

viewed as particular cases of the Jacobi polynomials; this is

what makes the Jacobi polynomials so much interesting.

They are defined by the Rodrigues type formula,

P i;|ð Þ
n xð Þ ¼ �1ð Þn

2nn!
1� xð Þ�i

1þ xð Þ�|

� dn

dxn
1� xð Þi 1þ xð Þ| 1� x2ð Þn

� �
: (50)

The Jacobi polynomials can be conveniently generated

by the three-term recurrence relation
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Pði;|Þnþ1ðxÞ¼ðaði;|Þn x�bði;|Þn ÞPði;|Þn ðxÞ�cði;|Þn P
ði;|Þ
n�1ðxÞ;

n	1; (51)

where

a
i;|ð Þ

n ¼ 2nþ iþ |þ 1ð Þ 2nþ iþ |þ 2ð Þ
2 nþ 1ð Þ nþ iþ |þ 1ð Þ ; (52)

b
i;|ð Þ

n ¼ |2 � i2
� �

2nþ iþ |þ 1ð Þ
2 nþ 1ð Þ nþ iþ |þ 1ð Þ 2nþ iþ |ð Þ ; (53)

c
i;|ð Þ

n ¼ nþ ið Þ nþ |ð Þ 2nþ iþ |þ 2ð Þ
nþ 1ð Þ nþ iþ |þ 1ð Þ 2nþ iþ |ð Þ ; (54)

with

Pði;|Þ0 ðxÞ ¼ 1; (55)

P i;|ð Þ
1 xð Þ ¼ 1

2
iþ |þ 2ð Þxþ 1

2
i� |ð Þ: (56)

In practice, the coefficients an; n ¼ 0; 1;…;N in the

definition of the DMA beampattern in Eq. (20) are well

known for all desired beampatterns. Because the coefficients

bn; n ¼ 0; 1;…;N are involved in the design of the DMA

beampatterns, as it can be observed in Eqs. (37), (41), (45),

and (46), it is important to determine them as a function of

the an’s. By simple identification between Eqs. (20) and (24)

and using the Jacobi polynomials, Pði;iÞn ðxÞ, we show how to

compute the bn’s in Appendix B.

VI. NUMERICAL STUDY

In this section, we provide some examples to illustrate

how to design frequency-invariant beampatterns with

DMAs. In particular, we consider the design of the

FIG. 1. Beampatterns of the non-robust (NR), robust (R), CP, and regularized CP (CP; �) filters, where M¼ 3 for the NR filter, M¼ 8 for the others, d¼ 1 cm,

� ¼ 10�3 for the regularized CP filter, and ði; |Þ ¼ ð0; 0Þ. The desired beampattern is the second-order supercardioid. The green area shows the difference

between the desired and designed beampatterns.
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supercardioid of different orders. The frequency-invariant

first-, second-, and third-order supercardioid beampatterns

are given by (De Sena et al., 2012)

B1;SCðxÞ ¼ 0:414þ 0:586x; (57)

B2;SCðxÞ ¼ 0:103þ 0:484xþ 0:413x2; (58)

B3;SCðxÞ ¼ 0:022þ 0:217xþ 0:475x2 þ 0:286x3; (59)

where x ¼ cos h. The design is made with the different filters

proposed in Sec. IV and the Jacobi polynomials with differ-

ent values of the pair ði; |Þ as shown in Sec. V.

A. Influence of the filters

In this subsection, we design the second-order supercar-

dioid with the non-robust, robust, CP, and regularized CP fil-

ters to evaluate their performance. The beampatterns and

SNR gains are plotted in Figs. 1 and 2, respectively, where

N¼ 2, M¼ 3 for the non-robust filter, M¼ 8 for the others,

d ¼ 1 cm, � ¼ 10�3 for the regularized CP filter,

ði; |Þ ¼ ð0; 0Þ, and the difference between the desired and

designed beampatterns is marked in green.

The beampatterns obtained with the non-robust filter are

almost frequency invariant as long as xs0 � 2p, as shown

in Figs. 1(1.1) and 1(1.2) [where (1.1) is the subplot in the

first row and first column and (1.2) is the subplot in the first

row and second column; in what follows, (l:k) denotes the

subplot in the lth row and kth column of the figure]; how-

ever, the beampattern diverges as the frequency increases

when this assumption does not hold [see Figs. 1(1.3) and

1(1.4)]. It is interesting to observe that the DF of this beam-

former is almost constant although the beampatterns at high

frequencies are different from those at low frequencies [see

the dash black line in Fig. 2(a)]. The underlying reason is

that the mainlobe gets slightly narrower while the sidelobes

get larger [see Fig. 1(1.4)]. It is clearly seen from Fig. 2(b)

(the dash black line) that the non-robust filter suffers from

white noise amplification and the amount of white noise

amplification increases as the frequency decreases.

The robust beamformer greatly improves the WNG [see

the dash-dot blue line in Fig. 2(b)]; especially at low fre-

quencies where the improvement is more than 20 dB as com-

pared to the non-robust case. Note that the robust

beamformer uses more sensors, and therefore the array is

larger in aperture as compared to that with the non-robust

method. The beampattern with the robust beamformer

changes as the frequency increases [see Figs. 1(2.2), 1(2.3),

and 1(2.4)], which also causes the degradation of the corre-

sponding DF [see the dash-dot black line in Fig. 2(a)].

The beampattern of the CP filter is almost frequency

invariant [see Figs. 1(3.1), 1(3.2), 1(3.3), and 1(3.4)], so is

the DF [see the dotted green line in Fig. 2(a)]. However, this

beamformer dramatically suffers from the white noise ampli-

fication problem [see the dot green line in Fig. 2(b)]; it is

even worse than the non-robust filter.

The beampatterns of the regularized CP filter are plotted

in Figs. 1(4.1), 1(4.2), 1(4.3), and 1(4.4). One can see that

the designed beampatterns resemble the desired beampattern

at low frequencies; interestingly, the mainlobe gets narrower

and narrower as the frequency increases, which causes the

DF to increase with frequency [see the solid red line in Fig.

2(a)]. The WNG of the regularized CP filter is almost the

same as the one obtained with the robust filter at low fre-

quencies [see the solid red line in Fig. 2(b)]. Consequently

we can state that this beamformer can be very useful in

practice.

B. Influence of the Jacobi parameters

Among the four proposed filters, the regularized CP fil-

ter seems to be the most interesting one. In this subsection,

we show how the regularized CP filter works for different

values of the pair (i; |). To fairly compare the performance

of this beamformer for different conditions of the Jacobi pa-

rameters, we choose the values of the regularization parame-

ter that give the same WNG. Figure 3 plots the beampatterns

of the regularized CP filter for different values of the pair

(i; |), where the WNG is 0 dB at 4 kHz, M¼ 8, and d¼ 1 cm.

The corresponding values of the regularization parameter are

shown in Table I. It can be seen that the beampatterns

diverge more or less from the desired one in different ways.

FIG. 2. SNR gains of the NR, R, CP, and CP; � filters, where M¼ 3 for the

NR filter, M¼ 8 for the others, d¼ 1 cm, � ¼ 10�3 for the regularized CP fil-

ter, and ði; |Þ ¼ ð0; 0Þ. The desired beampattern is the second-order

supercardioid.
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To investigate the behavior of these beampatterns and get

further insight into the choice of the pair ði; |Þ, we can rewrite

the optimization problem of the regularized CP filter as

min
h xð Þ

1

P0

ðp

0

w i;|ð Þ hð Þje h xð Þ; cos h½ �j2dh

subject to hH xð Þh xð Þ ¼ c; B0 xð Þh xð Þ ¼ b; (60)

where e½hðxÞ; cos h� is defined in Appendix A,

wði;|ÞðhÞ ¼ wði;|Þðcos hÞ sin h

¼ ð1� cos hÞið1þ cos hÞ| sin h (61)

is the weight function with respect to h, and c is determined

by the minimum WNG. This weight function determines the

error distribution in the optimization process. As we will

see, by properly setting this function, we can improve the

performance of the DMA beampattern design. We propose

to divide the weight function into the following four cases:

(1) i > |; | 
 �0:5. In this case, the weight function can be

written as

wði;|ÞðhÞ ¼ ð1� cos hÞi�| sin2|þ1h: (62)

As i increases, the beampattern error in the backward-

side becomes smaller and smaller, as shown in

FIG. 3. Beampatterns of the regularized CP filter for different values of the pair ði; |Þ. The WNG is 0 dB, M¼ 8, d¼ 1 cm, and f¼ 4 kHz. The desired beampat-

tern is the second-order supercardioid. The green area shows the difference between the desired and designed beampatterns.

TABLE I. Values of the regularization parameter in the regularized CP filter

for different values of the pair ði; |Þ. The WNG is 0 dB at f¼ 4 kHz, M¼ 8,

and d¼ 1 cm.

Regularization parameter � (�10�5)

| ¼ �0:8 | ¼ �0:5 | ¼ 0 | ¼ 2

i ¼ �0:8 345.99 410.47 378.55 582.94

i ¼ �0:5 262.98 403.15 429.35 736.53

i ¼ 0 119.71 222.67 286.44 352.27

i ¼ 2 6.79 17.62 33.68 55.73
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Figs. 3(2.1), 3(3.1), and 3(4.1) [see also Fig. 3(3.2) and

3(4.2)]. A typical weight function for this case is

wði;�0:5Þ
BC ðhÞ ¼ ð1� cos hÞiþ0:5; i > �0:5; (63)

which is the backward-facing-cardioid-like beampattern,

where the subscript BC stands for backward facing

cardioid.

(2) | > i; i 
 �0:5. In this case, the weight function can be

expressed as

wði;|ÞðhÞ ¼ ð1þ cos hÞ|�i
sin2iþ1h: (64)

As i increases, the sidelobe should be larger and larger,

as shown in Figs. 3(1.2), 3(1.3), and 3(1.4) [see also

Figs. 3(2.3) and 3(2.4)]. A typical particular case is

wð�0:5;|Þ
FC ðhÞ ¼ ð1þ cos hÞ|þ0:5; | > �0:5; (65)

which is the forward-facing-cardioid-like beampattern,

where the subscript FC stands for forward facing

cardioid.

(3) i ¼ | ¼ �0:5. In this case, the weight function is

wði;|ÞO ðhÞ ¼ 1; (66)

TABLE II. Values of the regularization parameter in the regularized CP fil-

ter for different weight functions. The WNG is �5 dB at f¼ 4 kHz, M¼ 8,

and d¼ 1 cm.

ði; |Þ �

BC (backward-facing-cardioid) (2,�0.5) 9.5�10�6

FC (forward-facing-cardioid) (�0.5,1) 1.9�10�3

D (dipole) (�0.8,�0.8) 5�10�4

O (omnidirectional) (�0.5,�0.5) 6�10�4

FIG. 4. Beampatterns of the regularized CP filter for different weight functions where M¼ 8 and d¼ 1 cm. The desired beampattern is the third-order supercar-

dioid. The green area shows the difference between the desired and designed beampatterns.
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which is the omnidirectional beampattern, where the

subscript O stands for omnidirectional. An example is

given in Fig. 3(2.2).

(4) �1 < i ¼ | < �0:5. In this case, the weight function is

wði;|ÞD ðhÞ ¼ sin2iþ1h; (67)

which is the dipole-like beampattern, the subscript D

stands for dipole. An example is shown in Fig. 3(1.1).

Now, we evaluate the performance of the regularized

CP filter with M¼ 8 and d¼ 1 cm for the design of the

third-order supercardioid with the above four choices of the

weight function. The values of the regularization parameter

for a �5 dB WNG at 4 kHz are shown in Table II for typical

values of the pair ði; |Þ. The beampatterns and SNR gains

corresponding to the regularized CP filter for different cases

of the weight function are shown in Figs. 4 and 5, respec-

tively. The behavior of the beampatterns coincide with the

previous analysis very well and the SNR gains for the dif-

ferent values of ði; |Þ are very close to each other.

VII. CONCLUSIONS

In this paper, we proposed a general and flexible

approach to the design of DMAs. First, we showed how to

express the beampatterns as a function of orthogonal polyno-

mials, from which we deduced a good approximation of any

beamformer beampattern. With this approximation, we then

developed four differential beamformers, namely, non-

robust, robust, CP, and regularized CP. Of particular impor-

tance is the regularized CP beamformer, which can greatly

improve the WNG at low frequencies and meanwhile makes

the designed beampatten closer to the desired one at high

frequencies. Finally, we showed how to use the Jacobi poly-

nomials in this context with which, by choosing proper pa-

rameters, we can design all kinds of DMA beampatterns of

any orders and also control the matching between the

designed beampattern and the desired one.
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APPENDIX A: EQUIVALENT FORM OF EQ. (44)

Using the constraint Eq. (39) in Eq. (30), we get

B½hðxÞ; x� ¼
XN

n¼0

bnPnðxÞ þ e½hðxÞ; x�; (A1)

where

e½hðxÞ; x� ¼
X1

n¼Nþ1

PnðxÞbT
n ðxÞhðxÞ (A2)

is the error between the designed and desired beampatterns.

Substituting Eq. (A1) into Eq. (42), and taking Eq. (21)

into account, we can rewrite the cost function as

kB h xð Þ; x½ �k2
w ¼

XN

n¼0

Pn

P0

b2
n þWLS h xð Þ½ �; (A3)

where

WLS h xð Þ½ � ¼ 1

P0

ð1

�1

w xð Þje h xð Þ; x½ �j2dx (A4)

is the weighted least-squares (WLS) criterion. It follows im-

mediately that Eq. (44) is equivalent to

min
hðxÞ

WLS½hðxÞ� subject to B0ðxÞhðxÞ ¼ b: (A5)

APPENDIX B: RELATIONSHIP BETWEEN THE an’s
AND bn’s

Let us first express the nth-order orthogonal polynomial

as

Pði;|Þn ðxÞ ¼
Xn

i¼0

nn;ix
i ¼ nT

n xn; (B1)

FIG. 5. SNR gains of the regularized CP filter for different weight functions

where M¼ 8 and d¼ 1 cm. The desired beampattern is the third-order

supercardioid.
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where

nn ¼ ½ nn;0 nn;1 � � � nn;n �T ; (B2)

xn ¼ ½ 1 x � � � xn �T (B3)

are vectors of length nþ 1. Using Eq. (B1), the recurrence

relation in Eq. (51) can be expressed as

Pði;|Þnþ1ðxÞ ¼ nT
nþ1xnþ1

¼ ðRnnnÞTxnþ1 � ðRn�1nn�1ÞTxnþ1; n 	 1;

(B4)

where

Rn ¼ aði;jÞn

01�ðnþ1Þ
Iðnþ1Þ�ðnþ1Þ

� 	
� bði;jÞn

Iðnþ1Þ�ðnþ1Þ
01�ðnþ1Þ

� 	
; (B5)

Rn�1 ¼ cði;jÞn
In�n

02�n

� 	
; (B6)

with IK�K and 0K�L being the identity matrix of size K�K
and the zero matrix of size K� L, respectively.

From Eq. (B4), the coefficients of the orthogonal poly-

nomial can be recursively computed as

nnþ1 ¼ Rnnn � Rn�1nn�1; n 	 1; (B7)

with

n0 ¼ 1; (B8)

n1 ¼
1

2
i� |ð Þ

1

2
iþ |þ 2ð Þ

� 	T

: (B9)

Substituting Eq. (B1) into Eq. (24), we can express the

beampattern as

BNðxÞ ¼
XN

n¼0

bnn
T
n xn

¼ ½ xT
0n0 xT

1n1 � � � xT
NnN �b

¼ xT
NNa;bb; (B10)

where

Na;b ¼

n0;0 n1;0 n2;0 � � � nN;0

0 n1;1 n2;1 � � � nN;1

0 0 n2;2 � � � nN;2

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � nN;N

2
666666664

3
777777775

(B11)

is an upper-triangular matrix of size ðN þ 1Þ � ðN þ 1Þ and

b ¼ ½ b0 b1 � � � bN �T : (B12)

Using Eq. (20) with Eq. (B10), we finally deduce the rela-

tionship between the coefficients an and bn

b ¼ N�1
a;ba; (B13)

where

a ¼ ½ a0 a1 � � � aN �T : (B14)
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