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This paper proposes a sparse linear prediction based algorithm to estimate time difference of ar-

rival. This algorithm unifies the cross correlation method without prewhitening and that with pre-

whitening via an ‘2/‘1 optimization process, which is solved by an augmented Lagrangian

alternating direction method. It also forms a set of time delay estimators that make a tradeoff

between prewhitening and non-prewhitening through adjusting a regularization parameter. The

effectiveness of the proposed algorithm is demonstrated in noisy and reverberant environments.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4906267]
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I. INTRODUCTION

Time delay estimation (TDE), which is used to measure

the relative time difference of arrival among spatially sepa-

rated sensors, plays an important role in localizing and track-

ing talkers in room acoustic environments. The generalized

cross-correlation (GCC) method1 is by far the most popular

TDE technique, which obtains the time delay between two

microphones as the time lag that maximizes the cross correla-

tion function between filtered versions of the received signals.

However, TDE performance of GCC was found to deteriorate

significantly when reverberation or noise is high. Many new

ideas have recently been proposed to better deal with noise

and reverberation, such as the multichannel cross-correlation

coefficient algorithm,2 the multichannel spatio-temporal pre-

diction algorithm,3 the blind channel identification algo-

rithm,4,5 the information theory based algorithms,6,7 etc.

Among all of these efforts, one simple yet effective way of

improving the robustness of TDE against reverberation is to

incorporate a prewhitening process as used in the phase trans-

form (PHAT) algorithm.1,8 As far as the prewhitening is con-

cerned, linear prediction is an important technique,9 which

has already been applied to TDE (Ref. 10) and acoustic source

localization.11 The configuration of the traditional linear pre-

dictor uses a cascade of a long-term predictor and a short-

term predictor.12 The consequent prediction coefficient vector

is highly sparse.13 However, this sparsity is reduced or even

not present when speech signals are contaminated by noise,

which degrades the performance of the linear predictor.

In this paper, we propose a sparse linear prediction algo-

rithm and investigate the effect of the prewhitening with dif-

ferent levels on TDE performance. The new algorithm

introduces a sparse regularization term to the least squares

criterion to form an ‘2/‘1 optimization method, which unifies

the cross-correlation (CC) and the GCC-PHAT algorithms

from a TDE performance perspective. Meanwhile, we pro-

pose to use an augmented Lagrangian alternating direction

method (ADM) (Ref. 14) to solve the optimization problem

of the linear predictor. The performance of the new approach

is demonstrated via numerical experiments.

II. TDE VIA SPARSE LINEAR PREDICTION

A. Algorithm derivation

Usually, one can directly compute the CC function

between two microphone signals x1(n) and x2(n) for TDE. The

CC approach has been shown to be robust against background

noise.4 This method, however, is sensitive to room reverbera-

tion. One way to improve the robustness of the CC method to

reverberation is through the use of a prewhitening process, as

in the well-known GCC-PHAT algorithm. In this paper, we

consider the prewhitening from a linear prediction perspective.

We consider the prediction of the current sample of

channel m (m¼ 1, 2) from its past samples, i.e.,

xðnÞ ¼
XK

k¼1

akxðn� kÞ þ eðnÞ; (1)

where ak, k¼ 1, 2,…, K, are prediction coefficients, K is the

length of the predictor, and e(n) is the prediction error. Note

that we have dropped the subscript m for the simplicity of

notation. In vector/matrix form, the signal in Eq. (1) can be

written as

xðnÞ ¼ XðnÞaþ eðnÞ; (2)

where

xðnÞ ¼ ½xðnÞ; xðnþ 1Þ;…; xðnþ K þ L� 1Þ�T ; (3)

a ¼ ½a1; a2;…; aK�T ; (4)

eðnÞ ¼ ½eðnÞ; eðnþ 1Þ;…; eðnþ K þ L� 1Þ�T ; (5)
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XðnÞ ¼

xðn� 1Þ xðn� 2Þ � � � xðn� KÞ
xðnÞ xðn� 1Þ � � � xðn� K þ 1Þ

..

. ..
. . .

. ..
.

xðnþ K þ L� 2Þ xðnþ K þ L� 3Þ � � � xðnþ L� 1Þ

2
66664

3
77775; (6)

L is the frame length, and (�)T denotes the transpose of a vec-

tor or matrix.

The most commonly used criterion to solve Eq. (2) is

the least squares method.15 The configuration of the conven-

tional predictor uses a cascade of a long-term predictor and a

short-term predictor. This structure is motivated from the

speech production model, which decouples the quasi-

periodic source (the vocal folds) from the vocal tract filter.12

The consequent prediction coefficient vector is highly

sparse,13 as illustrated in Fig. 1(a). This sparsity, however, is

greatly affected by the presence of noise, which can be seen

from Fig. 1(b). Since the prediction vector is sparse for clean

speech signals, we can use this property to improve the

robustness of the estimation of the linear predictor in noise.

To this end, we introduce an ‘1-norm based sparse regulari-

zation term to the least squares criterion to impose the spar-

sity of the prediction vector. So, we propose the following

‘2/‘1 optimization criterion to preprocess the microphone

signals:

min
a;e nð Þ

1

2
ke nð Þk2

‘2
þ kkak‘1

: e nð Þ ¼ x nð Þ � X nð Þa
� �

;

(7)

where k � k‘2
and k � k‘1

stand for the ‘2-norm and ‘1-norm,

respectively, and the parameter k> 0 is a scalar regulariza-

tion parameter.

It is obvious that Eq. (7) is a convex optimization prob-

lem, which can be solved by many existing methods, such as

the linear programming,16 the interior point method,17 the

primal-dual interior point method,18 etc. Unlike the above

approaches, we adopt the ADM, which efficiently uses the

separability of multiple variables,14 to solve this problem.

By means of an auxiliary vector u, Eq. (7) can be equiv-

alently formulated as

min
a;u

1

2
kX nð Þa� x nð Þk2

‘2
þ kkuk‘1

: a� u ¼ 0

� �
; (8)

which has an augmented Lagrangian subproblem formulated

as

min
a;u

1

2
kX nð Þa� x nð Þk2

‘2
þ kkuk‘1

�

þgT a� uð Þ þ b
2
ka� uk2

‘2

�
; (9)

where g is a Lagrangian multiplier vector and b> 0 is a pen-

alty parameter. The augmented term, i.e., the fourth term

within the braces of Eq. (9), is introduced to ensure that the

objective function is strictly convex. Given (uk, gk), we can

obtain (akþ 1, ukþ 1, gkþ 1) by alternating minimization of

Eq. (9) with respect to one variable while keeping the other

variables fixed. First, for u¼uk and g¼ gk, the minimization

of Eq. (9) with respect to a is equivalent to

min
a

1

2
kX nð Þa� x nð Þk2

‘2
þ b

2
ka� uk þ gk=bk2

‘2

� �
;

(10)

which has the following solution:

akþ1 ¼ ½XTðnÞXðnÞ þ bI��1½XTðnÞxðnÞ þ buk � gk�:
(11)

Second, when a¼ akþ 1 and g¼ gk are fixed, the minimiza-

tion of Eq. (9) with respect to u is equivalent to

min
u

kkuk‘1
þ b

2
kakþ1 � uþ gk=bk2

‘2

� �
; (12)

whose solution can be formulated by a soft-thresholding op-

erator, i.e.,

ukþ1 ¼ softðakþ1 þ gk=b; k=bÞ; (13)

where the soft function is defined as

softðn;lÞ¼ sgnðnÞ�maxfjnj�l;0g; 8n2RK; l> 0:

(14)

sgn(�) is the signum function, � denotes the dot product of

two vectors, all the other operations are performed in a

FIG. 1. (Color online) Illustration of the linear prediction vector, where the

predictor length is 128, the length of the speech frame is 1024. (a) Linear

prediction vector of a clean speech signal; (b) linear prediction vector esti-

mated using the least squares method at the SNR of 5 dB; (c) linear predic-

tion vector estimated with the ‘2/‘1 optimization at the SNR of 5 dB

(d¼ 0.1).
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component-wise way, and 0� ð0=0Þ ¼ 0 is assumed.

Finally, the Lagrangian multiplier vector g is updated by

gkþ1 ¼ gk þ bðakþ1 � ukþ1Þ: (15)

In summary, the solution of Eq. (8) can be achieved by

iteratively calculating Eqs. (11), (13), and (15). Then, we

obtain the prewhitened version of a microphone signal via

Eq. (2). It is found from Fig. 1(c) that we can obtain a sparse

prediction vector via this ‘2/‘1-norm optimization algorithm

in noisy environments.

Once the microphone signals are preprocessed by the

‘2/‘1-norm based linear prediction, TDE can be achieved by

finding the maximum of the CC function between the predic-

tion error signals.

B. Unification of PHAT and CC from a sparse linear
prediction perspective

It is found from Eq. (7) that the parameter k plays an im-

portant role in controlling the sparseness level of the predic-

tion vector. This parameter is mostly affected by the

microphone signals, i.e., X(n) and x(n). So, we can deter-

mine k by the following choice:

k ¼ dkXTðnÞxðnÞk‘1 ; (16)

where jjzjj‘1¼maxijzij denotes the ‘1-norm for any vector z

and d is a positive number.

(1) d ! 0: in this case, the ‘2/‘1 optimization problem is

degenerated to the traditional least squares one. So, the

microphone signals are prewhitened by the least squares

criterion. This prewhitening can obtain a similar effect

of the preprocessing in the GCC-PHAT algorithm on the

microphone signals. Figures 2(b) and 2(c) illustrate the

prediction error signals via the least squares- and ‘2/‘1-

norm-based linear prediction with d¼ 0.01. It is found

that the two prediction algorithms achieve similar whit-

ening effect.

(2) d ! 1: in this situation, the optimal solution of Eq. (8)

tends to zero. In this case, the prediction error signal is

the same as the microphone signal x(n). Figure 2(d)

depicts the prediction error signal via the ‘2/‘1-norm-

based linear prediction with d¼ 1.0. We can see that the

prediction error signal is comparable to the microphone

signal even at d¼ 1.0.

(3) If d takes some moderate value, the microphone signals

are partially whitened via the ‘2/‘1- norm based linear

prediction.

Therefore, we can see that the sparse linear prediction

based TDE algorithm can obtain a tradeoff between the CC

and PHAT algorithms, and the PHAT and CC algorithms are

unified in the same framework from the sparse linear predic-

tion perspective.

III. SIMULATIONS

In this section, we investigate the performance of the

proposed ‘2/‘1-norm based linear prediction (‘2/‘1-LP) TDE

algorithm. We also compare the TDE performance of the

proposed algorithm, the least squares based linear prediction

(LS-LP) algorithm, the CC algorithm, and the popular

GCC-PHAT algorithm.1,8 For the first two algorithms, the

predictor length K is set to 128. For the proposed algorithm,

the initial values of vector u and g are a null vector, respec-

tively, the iteration times is set to 50, and b¼ 1.0.

Experiments are carried out in a simulated room of size

7 m� 6 m� 3 m. For ease of exposition, positions in the

room are designated by (x, y, z) coordinates with reference to

the southwest corner of the room floor. Two microphones

are placed at (3.45, 3.00, 1.40) and (3.55, 3.00, 1.40), respec-

tively. The sound source is located at (3.83,1.50,1.40). The

impulse responses from the source to the two microphones

are generated using the image model.19 The microphones’

outputs are obtained by convolving the source signal with

the corresponding generated impulse responses and then

adding zero-mean white Gaussian noise to the results to con-

trol the signal-to-noise ratio (SNR).

In the simulations, the microphone signals are parti-

tioned into nonoverlapping frames with frame length of

64 ms. We use the probability of anomalous estimates and

the root mean square error (RMSE) of nonanomalous esti-

mates2,3 to evaluate the performance of the proposed algo-

rithm. The source signal is a segment of speech signal from

a male talker, which is sampled at 16 kHz, and the length of

the signal is approximately 1 min. The total number of

frames is 950 (the frame length is 1024 samples). The true

time delay from the sound source to the two microphones is

�1.0 samples.

Figure 3 plots the TDE results versus SNR in reverber-

ant environments (the reverberation time T60¼ 120, 300 ms).

It is seen from Figs. 3(a) and 3(b) that the LS-LP TDE algo-

rithm is comparable or slightly superior to the PHAT

FIG. 2. (Color online) The effect of sparse penalty with different levels on

the prediction error. (a) The noisy speech signal captured by a microphone;

(b) the prediction error signal after the noisy speech signal is preprocessed

by the least squares criterion; (c) the prediction error signal after the noisy

speech signal is preprocessed by the ‘2/‘1-norm criterion (d¼ 0.01); (d) the

prediction error signal after the noisy speech signal is preprocessed by the

‘2/‘1-norm criterion (d¼ 1.0).
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algorithm, which indicates that the linear prediction is effec-

tive to whiten the microphone signals for TDE. As far as the

three prewhitening based TDE algorithms are concerned, the

‘2/‘1-LP algorithm (d¼ 0.1) obtains the best TDE perform-

ance under the noisy and lightly or moderately reverberant

environments. The proposed ‘2/‘1-LP algorithm displays its

robustness to noise at low SNRs due to introduction of the

sparse constraint to the prediction vector. When SNR is low,

the ‘2/‘1-LP algorithm obtains a compromise beween the CC

and prewhitening-based algorithms.

Figures 3(c) and 3(d) plot the TDE results of the pro-

posed algorithm with different values of d in noisy and

reverberant environments (T60¼ 120, 300 ms). It is seen that

as d increases, the prediction vector becomes more sparse,

and so the ‘2/‘1-LP algorithm is more robust to noise, while

more and more sensitive to reverberation. Thus, a proper

value of d needs to be found in practical applications,

depending on the level of noise and reverberation.

IV. CONCLUSIONS

In this paper, we developed an ‘2/‘1-norm based linear

prediction optimization algorithm for TDE. This algorithm

unifies the cross correlation method without prewhitening

and that with prewhitening and it also provides a tradeoff

between the traditional CC and PHAT algorithms in dealing

with noise and reverberation. Experiments were carried out

and the results showed that the TDE algorithm with light

prewhitening of the microphone signals is robust to noise,

while the TDE algorithm with heavy prewhitening is robust

to reverberation.
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