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Theoretical Analysis of Differential Microphone
Array Beamforming and an Improved Solution

Chao Pan, Jingdong Chen, and Jacob Benesty

Abstract—Differential microphone arrays (DMAs), which are
responsive to the differential sound pressure field, have attracted
much attention due to their properties of frequency-invariant
beampatterns, small apertures, and potential of maximum direc-
tivity. Traditionally, DMAs are designed and implemented in a
multistage (cascade) way, where a proper time delay is used in
each stage to form a beampattern of interest. Recently, it was
reported that DMAs can be designed by solving a linear system
of equations formed from the information about the nulls of the
desired beampattern. This paper deals with the problem of beam-
forming with linear DMAs. Its major contributions are as follows.
1) By using the spatial transform, we present some theoretical
analysis of both the traditional cascade and new null-constrained
DMA beamforming. It is shown that the cascade and null-con-
strained DMAs of the same order with the same number of sensors
are theoretically identical. 2) We develop a two-stage approach
to the study of the robust DMA beamformer, which is based on
the principle of maximizing the white noise gain (WNG). The
first-stage of this approach is in the structure of the traditional
non-robust DMA while the second-stage filter is optimized for
improving the WNG. 3) Using the two-stage approach, we show
that the robust DMA beamformer may introduce extra nulls in
the beampattern at high frequencies; particularly, it introduces

extra nulls if the interelement spacing is equal to half
of the wavelength, where and are the number of sensors
and the DMA order, respectively. 4) We develop a method that can
solve the extra-null problem while maximizing the WNG in robust
DMA beamforming, i.e., a robust solution with a frequency-in-
variant beampattern.

Index Terms—Differential beamforming, differential micro-
phone arrays (DMAs), directivity factor, directivity pattern,
frequency-invariant beampattern, microphone arrays, robust
DMAs, white noise gain.
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I. INTRODUCTION

M ICROPHONE arrays combined with beamforming
techniques are often used for extracting a desired source

signal from noisy observations. The basic idea of beamforming
is to form a spatial filter so that signals coming from the desired
direction are preserved as much as possible while signals from
other directions are attenuated, where the amount of attenuation
depends on the designed beampattern.
Among many microphone array beamforming techniques,

differential microphone array (DMA) beamforming has at-
tracted much research interest in recent years because of its
properties of frequency-invariant beampatterns, small aper-
tures, and potential of maximum directivity [1], [2]. DMA
beamforming is originally inspired from the directional ribbon
microphone, which measures the sound pressure gradient
instead of the sound pressure [3], [4]. In traditional DMAs, the
outputs are formed from a set of omnidirectional sensors in a
multistage way as illustrated in Fig. 1 [5]. In such a structure,
the output of a first-order DMA is the difference between the
outputs of two adjacent omnidirectional microphones, and the
output of a second-order DMA is the difference between the
outputs of two first-order DMAs. Following the same line of
ideas, any order of DMAs can be formed. The time delay in
each stage is used for controlling the directions of the nulls
and forming a beampattern of interest such as the cardioid,
supercardioid, hypercardioid, and dipole [1]–[10]. With this
multistage DMA structure, many contributions have been made
over the last few decades. For example, an adaptive control
of the null of a first-order DMA in the rear-half plane was
investigated by combining the forward and backward facing
cardioids in [11]. In [12], the performance of a first-order DMA
in the presence of sensor mismatch with both additive and mul-
tiplicative errors was studied. In [13], the DMA was used for
estimating the power spectral density of the noise signal from
the microphone observations. The capability of interference
rejection of a DMA was investigated in [14]. In [15], a method
of beampattern design was proposed by controlling the tradeoff
between the front-to-back energy ratio and smoothness in the
frontal region of interest.
However, most existing DMAs are developed up to the

second order because higher-order DMAs are found sensitive
to both the sensors’ self noise and the mismatch between
sensors. Recently, with the use of the white noise gain (WNG)
as the criterion, the robustness of the traditional DMAs was
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Fig. 1. Schematic diagram of a cascade DMA beamforming in the frequency
domain, where , , and correspond to three nulls in the DMA
beampattern.

systematically studied [2]. The most intuitive way to improve
the WNG is to increase the number of sensors and exploit
the redundancy. A robust DMA design approach based on the
maximum WNG (MWNG) principle was then developed in
[2], where the filter was derived by minimizing the variance of
the residual white noise subject to a group of constraints on the
desired and nulls’ directions.
This paper deals with the problem of differential beam-

forming with linear DMAs. The major contributions of this
paper are as follows. First of all, it presents some theoret-
ical analysis of both the traditional differential beamforming
with the multistage structure and the recently proposed
null-constrained DMA approach. By introducing the spatial
transform, we show that the traditional and null-constrained
DMAs with the same order and same number of sensors are
theoretically identical. Second, it studies the limitations of both
the traditional (non-robust) and the robust DMAs. We develop
a two-stage DMA structure to investigate the performance
of the MWNG principle based DMA, where the first-stage
filter is equal to the traditional DMA beamformer and the
second-stage filter is derived by maximizing the WNG. It is
proved that all the zeros of the second-stage filter are located
on the unit circle which, on the one hand, introduces extra nulls
in the beampattern of the robust DMA and, on the other hand,
provides a clue for solving this problem. Third, we develop
a more general and flexible approach to the design of robust
DMAs, which eliminates the extra nulls of the robust DMA
by properly modifying the second-stage filter and pushing its
zeros off the unit circle.
The organization of this paper is as follows. In Section II,

we discuss the signal model and some important performance
measures. In Section III, we introduce the spatial transform
and study its properties. Section IV studies the traditional
non-robust DMA and its white noise amplification problem.
In Section V, we analyze the robust DMA and its extra-null
problem. In Section VI, we develop a novel robust differential
beamforming approach that circumvents the extra-null problem.
Finally, some conclusions are presented in Section VII.

Fig. 2. Illustration of a uniform linear microphone array system.

II. SIGNAL MODEL AND PERFORMANCE MEASURES

A. Signal Model
Let us consider the traditional signal model where a farfield

source of interest propagates in an anechoic acoustic environ-
ment and impinges on a uniform linear array consisting of
omnidirectional microphones as illustrated in Fig. 2. The signal
observed at the th ( ) sensor in the frequency
domain is

(1)

where is the angular frequency, is the imaginary unit,
with being the distance between two neighboring sensors

and the sound velocity in the air, is the incidence angle of
the source of interest, is the source signal, and is
the additive noise at the th microphone.
If we put all the observation signals together into a vector,

the signal model in (1) can be expressed as

(2)

where the superscript is the transpose operator,

(3)

is the phase-delay vector of length (which is the same as the
steering vector used in traditional beamforming), and the noise
vector, , is defined in a similar way to .
Generally, the desired source signal coming from the direc-

tion is extracted by applying a complex-valued linear filter:

(4)

to the observation signals vector, , i.e.,

(5)

where the superscript is the conjugate-transpose operator,
and and are the filtered desired
signal and residual noise, respectively.



PAN et al.: THEORETICAL ANALYSIS OF DMA BEAMFORMING AND AN IMPROVED SOLUTION 2095

B. Beampattern
The most popular performance measure in beamforming is

the beampattern (or directivity pattern), which describes the sen-
sitivity of a beamformer to a plane wave impinging on the array
from the direction . Mathematically, it is defined as

(6)

Ideally, an th-order DMA has a beampattern of the following
form:

(7)

where are real coefficients.
In differential beamforming with linear microphone arrays,

the mainlobe of the beampattern is generally at the endfire di-
rection, i.e., at , which indicates that the linear DMAs do not
have much flexibility in terms of beam steering. However, this
does not reduce the wide usefulness of linear DMAs. If beam
steering is needed in some applications, one may consider to use
multiple linear DMAs or two-dimensional or three-dimensional
array geometries with a better electronically steering capability.
Since the focus here is on linear DMAs, we assume that
in the rest of this paper.

C. SNR Gains
The signal-to-noise ratio (SNR), which quantifies the level of

the signal of interest relative to the level of the unwanted noise,
is one of the most important measures for evaluating the quality
of the observations and beamforming.
By taking the first microphone as the reference point, the

input SNR (iSNR) is defined, according to (1), as

(8)

where and are the
variances of and , respectively, with denoting
mathematical expectation.
The output SNR (oSNR) is obtained from (5), i.e.,

(9)

where and
are the correlation and pseudo-coherence matrices of ,
respectively.
From (8) and (9), we deduce that the SNR gain is

(10)

From (10), if the SNR gain is smaller than 1 (or 0 dB), the output
SNR will be smaller than the input SNR. In this case, the noise
is amplified relative to the desired signal.

D. White Noise Gain
The WNG, as its name indicates, is the beamformer’s SNR

gain in spatially white noise. In this case, the noise pseudo-co-
herence matrix becomes , where is the
identity matrix. Substituting into (10), we get the
WNG due to the beamforming filter, :

(11)

which is generally used to measure the robustness of a beam-
former against the sensors’ self noise. It can be checked that

(12)

where the equality holds if and only if ,
which corresponds to the traditional delay-and-sum beam-
former. The WNG of a DMA beamformer is usually much
smaller than .

E. Directivity Factor
In a spherically isotropic (diffuse) noise field, the noise has

an equal energy flow in all directions. In this case, the th
element of the noise pseudo-coherence matrix with a uniform
linear array is

(13)

Substituting (13) into (10), we get the directivity factor:

(14)

It can be checked that

(15)

This upper bound corresponds to the directivity factor of the
superdirective beamformer [20], [21].

III. SPATIAL TRANSFORM

A. Definition
Similar to the definition of the transform of a discrete linear

system, the spatial transform of the filter, , at the output
of the uniform linear array system, is defined as

(16)

where is a complex number.

B. Some Properties and Relations
Property 3.1: When a beamformer is implemented in a mul-

tistage (cascade) way, its spatial transform is equal to the
product of the spatial transforms of the beamforming filters
at all the different stages, i.e.,

(17)
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where is the total number of stages,

(18)

, are the elements of the th stage
filter,

and is the length of the filter at the th stage.
The proof of this property is equivalent to the proof that the

global filter, , is equal to the convolutions of filters from
the first stage to the last one, which is presented in Appendix A.
For example, the spatial transform of the multistage beam-

former shown in Fig. 1 can be written as

(19)

and the corresponding filter at each stage is

which is a vector of length 2.
From the definitions of the beampattern and spatial trans-

form, it is clear that

(20)

Since the distortionless constraint at the direction is required
in a DMA, i.e., , the equivalent form in the
spatial domain is

(21)

Property 3.2: The nulls in correspond to the zeros
of on the unit circle.
Property 3.3: The proof of this property is straightforward

from (20). From (17) with (20), we see that the beampattern of
a beamformer is equal to the product of the beampatterns from
all stages, i.e.,

(22)

This property shows that putting a null in any stage causes
a null in the global beampattern, which is how the traditional
cascade DMA forms a desired beampattern.

IV. TRADITIONAL DMA BEAMFORMING

The traditional th-order DMA is constructed to respond to
the th-order derivative of a sound pressure field along the axis
of the linear array by utilizing the finite difference between the
sensors’ outputs to approximate the corresponding derivative
[1]. The schematic diagram of the first-order, second-order, and
third-order DMAs with this approach is shown in Fig. 1, where

the time delays are determined by the nulls’ directions. Also, in
the traditional DMA, we always have , which is
assumed in this section.
According to Property 3.1, for a traditional th-order

DMA with nulls in the directions
, its spatial transform can generally be expressed

as

(23)

where

(24)

is a normalization factor to satisfy the distortionless con-
straint. The coefficients of this filter are derived in
Appendix B.
Replacing with in (23), we deduce the beam-

pattern of the traditional DMA beamformer:

(25)

It can be observed that, indeed, the beampattern has nulls in the
directions .
Using the first-order approximation of the exponential func-

tion, i.e., , the beampattern can be expressed as

(26)

which is an th-order polynomial with respect to . Since
the beampattern of an th-order directional derivative of a plane
wave along the array axis is , the DMA beampattern can
be viewed as a linear combination of derivative patterns from
the 0th order to the th order.

A. Equivalent Form
Recently, a new approach to the design of DMA beamformers

was proposed based on the use of the nulls’ information [2],
which converts the differential beamforming problem to one of
solving a simple linear system of equations. In the case of an
th-order DMA with distinct nulls, where

, the DMA beamformer is deduced
by solving the following linear system of equations:

(27)

where is a vector of length ,

...
(28)

is the constraint matrix of size ,
is defined in (3), and

(29)

is a vector of length .
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In Appendix C, the solution of (27) is deduced; it is observed
that the resulting filter coefficients are equal to those of the tra-
ditional cascade DMA beamformer with the same order. As a
matter of fact, according to Property 3.2, it is straightforward to
see that this approach is equivalent to designing a beamformer
with the zeros of on the unit circle.

B. White Noise Amplification Problem
The filter coefficients of the traditional th-order DMA

beamformer are given in Appendix B. Substituting (64) into
(11), we deduce that the corresponding WNG is

(30)

Since , we have

(31)

which means that the WNG approaches zero as the frequency
decreases to zero. Moreover, the right-hand side of (31) shows
that the WNG is also equal to zero when

(32)

For example, for the first-order cardioid, and
(see Fig. 3). Therefore, in the DMA design, the interelement

spacing should always satisfy

(33)

where is the maximal angular frequency of interest.
Since the denominator on the right-hand side of (30) is both

lower and upper bounded, replacing the exponential function of
the numerator with its first-order approximation, we can deduce
the behavior of the WNG at low frequencies:

(34)

which is equivalent to saying that the WNG approaches minus
infinity at a speed of dB/oct as the frequency approaches
zero, where is the order of the DMA. This well-known phe-
nomenon can be seen in Fig. 3. One can conclude that the tradi-
tional DMA suffers badly from white noise amplification.

V. MWNG DMA BEAMFORMING

As discussed above, traditional DMAs suffer from white
noise amplification, particularly at low frequencies. To deal
with this issue, a maximum WNG (MWNG) principle based
DMA was developed in [2], [7], in which the filter is obtained
from the optimization problem:

subject to (35)

where now and is a matrix of size
, which is no longer a square matrix. The solution

is

(36)

This beamformer is also called minimum-norm filter since it is
the minimum-norm solution of (27) with . This filter
maximizes the WNG by fully exploiting the fact that we have

Fig. 3. WNG of the traditional DMA beamformer with different beampatterns,
where the first-order cardioid is formed with 2 omnidirectional sensors and the
second-order supercardioid is formed with 3 omnidirectional sensors.

more microphones than required for a given order DMA. How-
ever, the corresponding beampattern introduces extra nulls at
high frequencies, which will be discussed in the next subsection.

A. Two-Stage Robust Filter
Since the nulls in the beampattern correspond to the zeros of

the filter on the unit circle, the spatial transform of the filter
that satisfies the constraints in (35) can be expressed as

(37)
where

(38)

is the spatial transform of the traditional th-order DMA
beamformer, superscripts and denote the first- and
second-stage filters in the two-stage structure, respectively,

is an ( )th-order polynomial with respect
to which corresponds to filter coefficients to be
optimized.
According to (37), any filter satisfying the constraints in (35)

can be expressed as

(39)

where the ( )th element of is

(40)
is the first-stage filter of length ,

and is the second-stage filter of length .
The first-stage filter is determined by the positions of the nulls

in the desired beampattern. The second-stage filter corresponds
to the redundancy. In the MWNG principle, the second-stage
filter is deduced by maximizing the WNG.
Using the distortionless constraint of the filter , we get

(41)

which is equivalent to

(42)
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Fig. 4. Distribution of the zeros of on the unit circle, where the
desired beampattern is the second-order supercardioid and .

where

(43)

is a vector of length . The proof of (43) is given in
Appendix D.
Therefore, the second-stage filter that maximizes the WNG is

deduced by solving the following problem:

subject to (44)

where

(45)

is a Hermitian matrix of size whose
elements are determined by the coefficients of the traditional
DMA. From (44), the second-stage filter with maximum WNG
principle is

(46)

Property 5.1: All the zeros of lie
on the unit circle.

Proof: See the proof in Appendix E.
Fig. 4 shows the phases of the zeros of in the

plane, where the gray region is the visible region (once a zero
appears in the visible region, there will be a null in the corre-
sponding beampattern). As we can see, more and more zeros
appear in the visible region as increases.
From (37) and (20), the beampattern of the MWNG DMA

can be written as

(47)

Since the beampattern of the MWNG filter is equal to the beam-
pattern of the traditional DMA filter multiplied by the beampat-
tern of the second-stage MWNG filter, the extra nulls are intro-
duced by the second-stage filter.

Property 5.2: As approaches , the beampattern of the
MWNG DMA beamformer introduces extra nulls.

Proof: The proof is directly obtained from Property 5.1
because the visible region occupies the entire unit circle when

.

B. Performance Evaluation
In this subsection, we design the second-order supercardioid,

which has two nulls in the directions and , with the
MWNG principle to illustrate how it works, where ,

cm, and the maximum frequency is kHz.
The beampatterns corresponding to the MWNG filter at

four different frequencies are shown in the right column of
Fig. 5. It is observed that these beampatterns are almost fre-
quency-invariant at low frequencies [Fig. 5(c.2) and (d.2)].
The underlying reason is that the second-stage filter of the
MWNG filter does not form nulls at low frequencies [see the
dashdot-red lines in Fig. 5(c.1) and Fig. 5(d.1)]. However, at
high frequencies, the second-stage filter forms nulls as expected
[see dashdot-red lines in Fig. 5(a1) and (a.2)]; and as a result,
the beampatterns of the MWNG filter introduces extra nulls, as
shown in Fig. 5(a.2) and Fig. 5(b.2). Basically, the number of
extra nulls increases as the frequency increases.
The SNR gains of the traditional DMA andMWNG filters are

shown in Fig. 6. As one can see, theWNG of theMWNGfilter is
much higher than that of the traditional DMA filter, especially at
low frequencies where the improvement is more than 20 dB.We
observe that the directivity factor of the MWNG filter is smaller
than that of the traditional DMA filter at frequencies lower than
5.6 kHz. The reason is that the second-stage filter does not have
the maximum array response in the endfire direction [see the
dashdot-red line in Fig. 5(c.1)]; at the same time, it amplifies
the noise from all other directions. It is interesting to see that
the MWNG filter achieves a higher directivity factor at high
frequencies. The underlying reason is that the amount of spatial
noise rejected by the extra nulls is more than the amount of
amplified noise in other directions.
In conclusion, the MWNG filter can achieve a much higher

WNG than the traditional DMA filter; however, it may sacrifice
the directivity factor at low frequencies and the frequency in-
variance of the beampattern at high frequencies.

VI. ZOU DMA BEAMFORMING

The nulls in the beampattern correspond to the zeros of the
beamformer on the unit circle. So, if we push the zeros off
the unit circle, the corresponding nulls are eliminated. Using
this principle, we develop a new beamformer in this section to
solve the extra-null problem of the MWNG filter by pushing
the zeros of the second-stage filter off the unit circle. This new
beamformer is named as ZOUDMA beamformer where “ZOU”
stands for “zeros off unit circle.”

A. Derivation
All the zeros of are located on the unit circle

in the plane. The second-stage filter can then be modified as
follows:

(48)
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Fig. 5. Beampatterns of the MWNG beamformer and its two cascade filters
at different frequencies (the solid-blue and dashdot-red lines in the left column
correspond to the first- and second- stage filters, respectively, and the solid-
black line in the right column corresponds to the MWNG filter). The desired
beampattern is the second-order supercardioid (with two nulls in the directions

and ) with and cm. (a.1) Two cascade filters with
kHz (a.2) MWNG filter with kHz (b.1) Two cascade filters with
kHz (b.2) MWNG filter with kHz (c.1) Two cascade filters with
kHz (c.2) MWNG filter with kHz (d.1) Two cascade filters with
kHz (d.2) MWNG filter with kHz.

where

(49)

One can verify that: if , the zeros of the modified filter
are not changed; if , all the zeros are inside the
unit circle; and if , all the zeros are outside the unit
circle.

Fig. 6. SNR gains of the traditional DMA and MWNG filters to form the
second-order supercardioid with and cm: (a) directivity factor
and (b) WNG.

Taking the distortionless constraint into account, we deduce
the second-stage ZOU filter:

(50)

Substituting (50) into (39), we deduce the ZOU filter:

(51)

In particular, for and , the ZOU filter degen-
erates, respectively, to the traditional DMA and MWNG beam-
formers, respectively. Therefore, the ZOU beamformer is in fact
a tradeoff filter between the traditional DMA and MWNG fil-
ters, which handles the compromise between the WNG and the
frequency invariance of the beampattern.

B. Performance Evaluation

Same as the evaluation of the MWNG filter, we consider to
design the second-order supercardioid with the ZOU filter and
compare its performance with the traditional DMA andMWNG
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Fig. 7. Beampatterns of the ZOU beamformer and its two cascade filters at
four different frequencies (the solid-blue and dashdot-red lines in the left column
correspond to the first- and second- stage filters, respectively, and the solid-black
line in the right column corresponds to the ZOU filter). The desired beampattern
is the second-order supercardioid (with two nulls in the directions and

) with and cm. (a.1) Two cascade filters with kHz
(a.2) ZOU filter with kHz (b.1) Two cascade filters with kHz
(b.2) ZOU filter with kHz (c.1) Two cascade filters with kHz
(c.2) ZOU filter with kHz (d.1) Two cascade filters with kHz
(d.2) ZOU filter with kHz.

filters. The simulation conditions are the same as those for the
MWNG filter design. The parameter is chosen as

(52)

There are two reasons for this. 1) When , should
be equal to 0 because all the extra nulls will occur

Fig. 8. SNR gains of the traditional DMA, MWNG, and ZOU filters to form
the second-order supercardioid with and cm: (a) directivity
factor and (b) WNG.

in this case. 2) When , should be equal to 1 since
no extra null will be introduced by the second-stage filter in this
case.
The beampatterns of the ZOU filter and its two cascade fil-

ters at four different frequencies are shown in the left column
of Fig. 7. It can be seen that the second-stage filter forms no
nulls and that the beampatterns are almost frequency-invariant,
as shown in Fig. 7(a.1), (b.1), (c.1), and (d.1).
Fig. 8(a) and (b) shows the directivity factors and white noise

gains of the traditional DMA, MWNG, and ZOU filters. As
one can see, the ZOU filter achieves a WNG similar to the one
with the MWNG filter at low frequencies. At the same time, the
degradation of WNG at high frequencies is acceptable. Notice
that the directivity factor of the ZOU filter at high frequencies
is much smaller than that of the MWNG filter. The underlying
reason is that the extra nulls and their capabilities of spatial noise
rejection no longer exist in the ZOU filter.

VII. CONCLUSIONS
In this paper, we studied both the traditional cascade DMA

and the null-constrained DMA using the spatial transform.
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We proved that the traditional cascade DMA and the null-con-
strained DMA with the same order and the same number of mi-
crophones are theoretically identical. A two-stage DMA struc-
ture was then introduced to analyze the null-constrained robust
DMA beamformer that maximizes the WNG given the order of
the DMA and the number of sensors. In such a structure, the
first-stage filter is the traditional DMA beamformer that forms
the beampattern of interest and the second-stage filter attempts
to maximize the WNG. Using this two-stage DMA structure,
we showed that the robust DMA beamformer may introduce
extra nulls to the beampattern and the extra nulls are from the
second-stage filter. Meanwhile, we proved that all the zeros of
the second-stage filter are located on the unit circle. By pushing
the zeros of the second-stage filter off the unit circle, we de-
veloped a ZOU DMA beamformer that can eliminate the extra
nulls in the robust DMA beamformer.

APPENDIX
PROOF OF PROPERTY 3.1

In this appendix, for the ease of exposition, we drop
the dependency on the angular frequency in all vari-
ables. Let us further denote the output of the th stage as

. From the multistage
structure, the th output in the first stage can be expressed as

(53)

where in this stage. In a similar way,
we deduce the th output in the second stage as

(54)

where in this stage. Substi-
tuting (53) into (54), we deduce that

(55)

Since the th [ ] element of the
convolution between the first- and second-stage filters is

(56)

where denotes convolution and is the th element of the
sequence, we can rewrite (55) as

(57)

Continuing this process, we finally deduce the output of the last
stage:

(58)

which means that 1) to implement this -stage beamformer we
need sensors and 2) the global filter is equal
to the convolutions of the sub-filters from the first stage to the
last one. This completes the proof of Property 3.1.

APPENDIX
FILTER COEFFICIENTS OF THE CASCADE DMA BEAMFORMER

Let us define

(59)
(60)

We can rewrite the spatial transform of the cascade DMA as

(61)

where ( ) is an th-order combina-
tion factor of and has terms.
Specifically, we have

...

Since

(62)
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it is not difficult to deduce the relationship of these combination
factors:

(63)

Finally, the traditional cascade DMA filter coefficients can be
expressed as

(64)

APPENDIX
FILTER COEFFICIENTS OF THE NULL-CONSTRAINED

DMA BEAMFORMER

For the null-constrained DMA with distinct nulls, the filter is
the solution of the following equation:

(65)

where

...
...

. . .
...

(66)

(67)
(68)

Eliminating the first row and ( )th ( ) column
of , we get

...
. . .

...
...

. . .
... (69)

According to (65), the filter coefficients can be rewritten as

(70)

where denotes the determinant of a matrix.
Combining (64) with (70), the two DMA approaches are

equivalent if, ,

(71)

Let us evaluate the determinant of .
, we replace the th column with

where denotes the th column of a matrix. The determinant
of the resulting matrix is the same as the original one, i.e.,

...
...

. . .
...

(72)

It is then easy to deduce that

(73)

For , is a Vandermonde matrix. The corresponding
determinant is

(74)

Therefore, the first filter coefficients of the two DMA ap-
proaches are equal.
For , is still a Vandermonde matrix. The corre-

sponding determinant is

(75)
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Therefore, the last filter coefficients of the twoDMAapproaches
are also equal.
For , replacing the ( )th column of

with

and the other columns with

the determinant of can be deduced as in (76). Since
(see equation at the bottom of the page),

(77)

we can see that

(78)

Using the mathematical induction method, we can prove that
(71) holds .
Basic Step: For , (71) obviously holds according to

(74) and (75).
Inductive Step: Assuming that ,

(79)

Substituting (79) into (78), we can deduce that

(80)

Substituting (73) into (80), we get

(81)

Substituting (63) into (81), we finally find that

(82)

which completes the proof for .

APPENDIX
PROOF OF (43)

From (43), the th ( ) element of the
vector can be written as

(83)

where the superscript denotes the complex-conjugate opera-
tion. Substituting (40) into (83), we deduce that

(84)

According to the distortionless constraint in (27), we have

(85)

Substituting (85) into (84), we finally deduce that

(86)

which completes the proof.

APPENDIX
PROOF OF PROPERTY 5.1

In this appendix, we prove that the zeros of are
all located on the unit circle in the plane. This proof is similar
to the one given in [22] showing that all the zeros of the max-
imum eigenvector of a symmetric Toeplitz matrix are located on
the unit circle.

...
. . .

...
...

. . .
... (76)
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One can easily verify that the normalized is also
the unique solution of

(87)

where

(88)
(89)
(90)

It can be checked that both and are Hermitian Toeplitz
matrices of size with . By defining

(91)
(92)

the optimization problem in (87) can be expressed as

(93)

where

(94)

It can be deduced that

(95)

where are the roots of . Therefore,
we have at most different with the same .
If is the unique solution to (86), the roots should satisfy

which means that all the roots are on the unit circle in the
plane.
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