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Due to their small size, differential microphone arrays (DMAs) are very attractive. Moreover, they have
been effective in combating noise and reverberation. Recently, a new class of DMAs of different orders
have been developed with the MacLaurin’s series and the frequency-independent patterns. However,
the MacLaurin’s series does not approximate well the exponential function, which appears in the general
definition of the beampattern, when the intersensor spacing is not small enough. To circumvent this
problem, we propose in this paper to approximate the exponential function with the Jacobi–Anger expan-
sion. Based on this approximation and the frequency-independent Chebyshev patterns, we derive first-,
second-, and third-order DMAs. Furthermore, in order to improve the robustness of DMAs against white
noise amplification, we propose to use more microphones combined with minimum-norm filters. It is
also shown that the Jacobi–Anger expansion is optimal from a mean-squared error perspective.
Simulations are carried out to evaluate the performance of the proposed DMAs.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that noise and reverberation are detrimental to
the speech quality and intelligibility. As a consequence, the perfor-
mance of many applications, such as hands-free telecommunica-
tion and hearing aids, can be severely degraded. Over the past
decades, approaches based on microphone arrays and beamform-
ing techniques have been widely studied in the difficult context
of noisy and reverberant environments [1–4]. Recently, methods
based on differential microphone arrays (DMAs) have received a
great deal of attention due to their small size and potential of high
directivity factors [5–8]. As early as in the 1940s, DMAs of different
orders were constructed and their anti-noise characteristics were
analyzed [9,10]. Since then, a good amount of progress has been
made. In [11,12], adaptive DMAs were developed to suppress spa-
tially non-stationary noise. In [13], an approach based on sensor
calibration was designed to increase DMAs’ robustness against
sensor mismatch, which may seriously damage their performance.
In [14], DMAs were used to estimate the noise power spectral den-
sity (PSD), and the spectral subtraction algorithm was then applied
to suppress noise. In [15,16], approaches for the design of higher-
order DMAs were developed. In [6,7], DMAs were systematically
studied from a signal processing perspective. Specifically, the
design, implementation, and performance analysis of DMAs were
presented.

In [6,8], the exponential function, which appears in the general
definition of the beampattern, was approximated with the
MacLaurin’s series; this lead to the design of DMAs of different
orders. It has been reported that DMAs based on the MacLaurin’s
series are capable of achieving high directivity factors. However,
it has been observed that when the intersensor spacing is not very
small, the MacLaurin’s series is no longer a good approximation of
the exponential function. As a result, the performance of DMAs is
affected. To avoid this problem, we propose in this paper to use
the Jacobi–Anger expansion to approximate the exponential func-
tion. We first derive the traditional1 first-, second-, and third-order
DMAs. Many simulation results show that the traditional DMAs with
the Jacobi–Anger expansion significantly improve the directivity
reM P 2
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Fig. 1. A uniform linear microphone array with processing.

2 This noise models the sensor noise.
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factor, but have the problem of white noise amplification, like any
other approaches. To deal with this serious side effect, we derive
robust DMAs by using more microphones combined with minimum-
norm filters. It is shown that the robust DMAs with the Jacobi–Anger
expansion improve the white noise gain considerably and, therefore,
are more robust against any imperfections in the system. In compar-
ison with DMAs based on the MacLaurin’s series, DMAs based on
the Jacobi–Anger expansion perform better by giving higher directiv-
ity factors and white noise gains, confirming that the latter approxi-
mation is preferable in the derivation of DMAs. It is also shown that
the Jacobi–Anger expansion is optimal from an MSE perspective.

The rest of this paper is organized as follows. In Section 2, some
basic concepts of DMAs are introduced. In Section 3, frequency-
independent patterns and the approximation based on the
Jacobi–Anger expansion are presented. The traditional and robust
first-, second-, and third-order DMAs are derived in Sections 4–6,
respectively. Simulations are carried out to evaluate the perfor-
mance of DMAs in Section 7, followed by our conclusions in
Section 8.

2. Signal model, problem formulation, and definitions

We consider a source signal (plane wave), in the farfield, that
propagates in an anechoic acoustic environment at the speed of
sound, i.e., c ¼ 340 m/s, and impinges on a uniform linear sensor
array consisting of M omnidirectional microphones, where the dis-
tance between two successive sensors is equal to d (see Fig. 1). The
direction of the source signal to the array is parameterized by the
azimuth angle h. In this scenario, the steering vector (of length M)
is given by

d x; hð Þ ¼ 1 e�|xs0 cos h � � � e�|ðM�1Þxs0 cos h
� �T

; ð1Þ

where the superscript T is the transpose operator, | ¼
ffiffiffiffiffiffiffi
�1

p
is the

imaginary unit, x ¼ 2pf is the angular frequency, f > 0 is the tem-
poral frequency, and s0 ¼ d=c is the delay between two successive
sensors at the angle h ¼ 0. The acoustic wavelength is k ¼ c=f .

In order to avoid spatial aliasing [3], which has the negative
effect of creating grating lobes (i.e., copies of the main lobe, which
usually points toward the desired signal), it is necessary that the
inter-element spacing is less than k=2, i.e.,

xs0 < p: ð2Þ
The condition (2) easily holds for small values of d and at low fre-
quencies but not at high frequencies.

We consider fixed beamformers, such as DMAs [6,7,13,15,16],
where the main lobe is at the angle h ¼ 0 (endfire direction) and
the desired signal propagates from the same angle. Our focus is
on the design of different orders DMAs that are robust to white
noise amplification. For that, a complex weight, H�

mðxÞ;m ¼
1;2; . . . ;M, is applied at the output of each microphone, where
the superscript ⁄ denotes complex conjugation. The weighted out-
puts are then summed together to form the beamformer output as
shown in Fig. 1. Putting all the gains together in a vector of length
M, we get

hðxÞ ¼ H1ðxÞ H2ðxÞ � � � HMðxÞ½ �T : ð3Þ
Then, the objective is to design such a filter so that the array obeys a
given DMA pattern.

The vector containing the microphone signals can be expressed
as

yðxÞ¼ Y1ðxÞ Y2ðxÞ � � � YMðxÞ½ �T ¼d x;0ð ÞXðxÞþvðxÞ; ð4Þ

where d x;0ð Þ is the steering vector at h ¼ 0 (direction of the
source), XðxÞ is the desired signal, and
vðxÞ ¼ V1ðxÞ V2ðxÞ � � � VMðxÞ½ �T ð5Þ
is the additive noise signal vector.

The beamformer output is simply [4]

ZðxÞ ¼ hHðxÞyðxÞ ¼ hHðxÞd x;0ð ÞXðxÞ þ hHðxÞvðxÞ; ð6Þ
where ZðxÞ is the estimate of the desired signal, XðxÞ, and the
superscript H is the conjugate-transpose operator.

If we take microphone 1 as the reference, we can define the
input signal-to-noise ratio (SNR) with respect to this reference as

iSNRðxÞ ¼ /XðxÞ
/V1

ðxÞ ; ð7Þ

where /XðxÞ ¼ E XðxÞj j2
h i

and /V1
ðxÞ ¼ E V1ðxÞj j2

h i
are the vari-

ances of XðxÞ and V1ðxÞ, respectively, with E½�� denoting mathemat-
ical expectation.

The output SNR is obtained from the variance of ZðxÞ:

oSNR hðxÞ½ � ¼ /XðxÞ
hHðxÞd x;0ð Þ
��� ���2
hHðxÞUvðxÞhðxÞ

¼ /XðxÞ
/V1

ðxÞ �
hHðxÞd x;0ð Þ
��� ���2
hHðxÞCvðxÞhðxÞ

; ð8Þ

whereUvðxÞ ¼ E vðxÞvHðxÞ� �
and CvðxÞ ¼ Uv ðxÞ

/V1
ðxÞ are the correlation

and pseudo-coherence matrices of vðxÞ, respectively.
The definition of the gain in SNR is easily derived from the

previous definitions, i.e.,

G hðxÞ½ � ¼ oSNR hðxÞ½ �
iSNRðxÞ ¼

hHðxÞd x;0ð Þ
��� ���2
hHðxÞCvðxÞhðxÞ

: ð9Þ

We are interested in two types of noise.

� The temporally and spatially white noise with the same
variance at all microphones.2 In this case, CvðxÞ ¼ IM , where IM
is the M �M identity matrix. Therefore, the white noise gain
(WNG) is
Gwn hðxÞ½ � ¼
hHðxÞd x;0ð Þ
��� ���2

hHðxÞhðxÞ
: ð10Þ

The delay-and-sum (DS) beamformer:
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hDSðxÞ ¼ d x;0ð Þ
M

; ð11Þ

leads to the maximum possible WNG given by

Gwn;maxðxÞ ¼ M: ð12Þ
We will see, actually, how the white noise is amplified, espe-
cially at low frequencies, with DMAs.

� The diffuse noise,3 where
CvðxÞ½ �ij ¼ CdnðxÞ½ �ij ¼
sin xðj� iÞs0½ �
xðj� iÞs0 ¼ sinc xðj� iÞs0½ �:

ð13Þ
In this scenario, the gain in SNR, i.e.,

Gdn hðxÞ½ � ¼
hHðxÞd x;0ð Þ
��� ���2

hHðxÞCdnðxÞhðxÞ
ð14Þ

is called the directivity factor (DF) and the directivity index is
simply defined as [3,7]

D hðxÞ½ � ¼ 10log10Gdn hðxÞ½ �: ð15Þ
It can be shown that the maximum possible DF is [17]

Gdn;maxðxÞ ¼ M2: ð16Þ
This gain can be achieved but at the expense of white noise
amplification, especially at low frequencies.

These definitions of the SNRs and gains, which are extremely
useful for the evaluation of any types of DMAs, conclude this
section.

3. Beampatterns

Each beamformer has a pattern of directional sensitivity, i.e., it
has different sensitivities from sounds arriving from different
directions. The beampattern or directivity pattern describes the
sensitivity of the beamformer to a plane wave (source signal)
impinging on the array from the direction h. For a uniform linear
array, it is mathematically defined as

BM hðxÞ; h½ � ¼ dH x; hð ÞhðxÞ ¼
XM
m¼1

HmðxÞe|ðm�1Þxs0 cos h: ð17Þ

The frequency-independent beampattern of an Nth-order DMA
is well known. It is given by [6,7]

BD;NðhÞ ¼
XN
n¼0

an cosn h; ð18Þ

where an; n ¼ 0;1; . . . ;N are real coefficients. The different values of
these coefficients determine the different directivity patterns of the
Nth-order DMA. There are other ways to express (18) as suggested
in [15].

We define the Nth-order frequency-independent Chebyshev
pattern as

BC;NðhÞ ¼
XN
n¼0

bnTn cos hð Þ; ð19Þ

where bn; n ¼ 0;1; . . . ;N are real coefficients and

Tn cos hð Þ ¼ cos nhð Þ; h 2 0;p½ �; n ¼ 0;1; . . . ;N ð20Þ
are Chebyshev polynomials of the first kind [18,19], which have the
recurrence relation:
3 This situation corresponds to the spherically isotropic noise field.
Tnþ1 cos hð Þ ¼ 2 cos h� Tn cos hð Þ � Tn�1 cos hð Þ; ð21Þ
with

T0 cos hð Þ ¼ 1; T1 cos hð Þ ¼ cos h:

The two patterns BD;NðhÞ and BC;NðhÞ are very much related and any
DMA pattern can be designed with BC;NðhÞ. Indeed, we know from
the usual trigonometric identities that

cosn h ¼
X
i

cðn; iÞ cos n� 2ið Þh½ �; ð22Þ

where cðn; iÞ are some binomial coefficients. Substituting (22) into
(18), we deduce that any DMA pattern can be written as a Cheby-
shev pattern, BC;NðhÞ. Conversely, cos nhð Þ can be expressed as a
sum of powers of cos h thanks to the recurrence relation (21). Con-
sequently, any Chebyshev pattern can be written as a DMA pattern.
We can then conclude that BD;NðhÞ and BC;NðhÞ are strictly equiva-
lent. In this study, BC;NðhÞ is preferred as it will become clear soon.

The relations between the coefficients bn;n ¼ 0;1; . . . ;N of
BC;NðhÞ and the coefficients an;n ¼ 0;1; . . . ;N of BD;NðhÞ for the first
three orders are as follows:

� N ¼ 1 : b0 ¼ a0; b1 ¼ a1;
� N ¼ 2 : b0 ¼ a0 þ a2

2 ; b1 ¼ a1; b2 ¼ a2
2 ; and

� N ¼ 3 : b0 ¼ a0 þ a2
2 ; b1 ¼ a1 þ 3a3

4 ; b2 ¼ a2
2 ; b3 ¼ a3

4 .

Now, one may ask how are (17) and (19) related? Let us denote
by

-m ¼ ðm� 1Þxs0: ð23Þ
The Jacobi–Anger expansion [20,21], which represents an expansion
of plane waves into a series of cylindrical waves, is given by

e|-m cos h ¼ J0 -mð Þ þ 2
X1
n¼1

|nJn -mð Þ cos nhð Þ ¼
X1
n¼0

|nJn -mð Þ cos nhð Þ;

ð24Þ
where

|n ¼ 1; n ¼ 0
2|n; n ¼ 1;2; . . . ;N

�
ð25Þ

and

Jn -mð Þ ¼ 1
2
-m

� �nX1
k¼0

� 1
4-

2
m

	 
k
k!C nþ kþ 1ð Þ ð26Þ

is the nth-order Bessel function of the first kind [18]. In Appendix A,
we prove that the Jacobi–Anger expansion is the optimal approxi-
mation of e|-m cos h in the mean-squared error (MSE) sense. Using
(24) in the general definition of the beampattern, we obtain

BM hðxÞ; h½ � ¼
XM
m¼1

HmðxÞe|-m cos h ¼
XM
m¼1

HmðxÞ
X1
n¼0

|nJn -mð Þ cos nhð Þ

¼
X1
n¼0

cos nhð Þ
XM
m¼1

|nJn -mð ÞHmðxÞ
" #

: ð27Þ

If we limit the expansion to the order N;BM hðxÞ; h½ � can be approx-
imated by

BM;N hðxÞ; h½ � ¼
XN
n¼0

cos nhð Þ
XM
m¼1

|nJn -mð ÞHmðxÞ
" #

: ð28Þ

For m ¼ 1;-1 ¼ 0, so that J0 -1ð Þ ¼ 1 and Jn -1ð Þ ¼ 0;n ¼ 1;2; . . . ;N.
We will see how to use (28) in order to design both traditional and
robust DMAs of different orders.
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4. Robust first-order DMAs

Let us assume that d is very small (implying that-m is also very
small), so that BM;N hðxÞ; h½ � with N ¼ 1 approximates well
BM hðxÞ; h½ �. Then, we have

BM;1 hðxÞ; h½ � ¼
XM
m¼1

HmðxÞ J0 -mð Þ þ 2|J1 -mð Þ cos h½ �: ð29Þ

We study two cases: M ¼ 2 and M > 2. The latter is considered as
the robust approach, while the former is the traditional one, which
is not robust.

For M ¼ 2, we can express (29) as

B2;1 hðxÞ; h½ � ¼ H1ðxÞ þ J0 -2ð ÞH2ðxÞ þ 2|J1 -2ð ÞH2ðxÞ cos h: ð30Þ

Now, we wish to find H1ðxÞ and H2ðxÞ in such a way that
B2;1 hðxÞ; h½ � is a first-order frequency-invariant Chebyshev pattern,
i.e.,

B2;1 hðxÞ; h½ � ¼ b0 þ b1 cos h ¼ BC;1ðhÞ: ð31Þ

Identifying the previous expression with (30), we easily find that

H2ðxÞ ¼ b1

2|J1 -2ð Þ ð32Þ

and

H1ðxÞ ¼ �J0 -2ð ÞH2ðxÞ þ b0: ð33Þ

Therefore, with this approach, we can design any first-order DMA.
In some interval of very high frequencies, J1 -2ð Þ may have some
zeros. Therefore, if J1 -2ð Þ ¼ 0 for some very few high frequencies,
the best thing to do is to not process the microphone signals at
those frequencies. This, however, never happens below 8 kHz.

The case M > 2 is more interesting. We still want to find
the coefficients HmðxÞ; m ¼ 1;2; . . . ;M in such a way that
BM;1 hðxÞ; h½ � ¼ BC;1ðhÞ. It is not hard to get

J1 -2ð Þ J1 -3ð Þ � � � J1 -Mð Þ½ �

H2ðxÞ
H3ðxÞ

..

.

HMðxÞ

2
66664

3
77775 ¼ b1

2|
ð34Þ

and

H1ðxÞ þ
XM
i¼2

J0 -ið ÞHiðxÞ ¼ b0: ð35Þ

Taking the minimum-norm solution of (34), it is clear that the filter
coefficients are as follows:

HiðxÞ ¼ J1 -ið Þb1

2|
PM

m¼2J
2
1 -mð Þ ; i ¼ 2;3; . . . ;M ð36Þ

and

H1ðxÞ ¼ �
XM
i¼2

J0 -ið ÞHiðxÞ þ b0: ð37Þ

The beamformer, hðxÞ, whose components are given in (37) and
(36), is the minimum-norm filter for robust first-order DMAs. In
Appendix B, we demonstrate that the white noise gain of the pro-
posed first-order DMA is generally an increasing function of M,
the number of microphones.
5. Robust second-order DMAs

We follow the samemethodology as in the previous section but,
this time, we assume that BM;N hðxÞ; h½ � with N ¼ 2 approximates
well BM hðxÞ; h½ �. Therefore,

BM;2 hðxÞ;h½ � ¼
XM
m¼1

HmðxÞ J0 -mð Þþ2|J1 -mð Þcosh�2J2 -mð Þcosð2hÞ½ �:

ð38Þ
We are ready to study the non-robust (M ¼ 3) and robust (M > 3)
cases.

For M ¼ 3, we can rewrite (38) as

B3;2 hðxÞ;h½ � ¼H1ðxÞþ J0 -2ð ÞH2ðxÞþ J0 -3ð ÞH3ðxÞ
þ2|J1 -2ð ÞH2ðxÞcoshþ2|J1 -3ð ÞH3ðxÞcosh
�2J2 -2ð ÞH2ðxÞcosð2hÞ�2J2 -3ð ÞH3ðxÞcosð2hÞ: ð39Þ

Our aim is to find H1ðxÞ;H2ðxÞ, and H3ðxÞ in such a way that
B3;2 hðxÞ; h½ � is a second-order frequency-invariant Chebyshev pat-
tern, i.e.,

B3;2 hðxÞ; h½ � ¼ b0 þ b1 cos hþ b2 cosð2hÞ ¼ BC;2ðhÞ: ð40Þ
By simple identification, we find that the solution is

H2ðxÞ
H3ðxÞ

� �
¼ J1 -2ð Þ J1 -3ð Þ

J2 -2ð Þ J2 -3ð Þ

� ��1 b1
2|

�b2
2

" #
ð41Þ

and

H1ðxÞ ¼ �J0 -2ð ÞH2ðxÞ � J0 -3ð ÞH3ðxÞ þ b0: ð42Þ
We see that we can design any second-order DMA.

For M > 3, we still want to find the coefficients
HmðxÞ;m ¼ 1;2; . . . ;M in such a way that BM;2 hðxÞ; h½ � ¼ BC;2ðhÞ.
It is not hard to find that the solution is

H2ðxÞ
H3ðxÞ

..

.

HMðxÞ

2
66666664

3
77777775
¼ !T

2ðxÞ !2ðxÞ!T
2ðxÞ� ��1

b1
2|

�b2
2

2
4

3
5 ð43Þ

and

H1ðxÞ ¼ �
XM
i¼2

J0 -ið ÞHiðxÞ þ b0: ð44Þ

where

!2ðxÞ ¼ J1 -2ð Þ J1 -3ð Þ � � � J1 -Mð Þ
J2 -2ð Þ J2 -3ð Þ � � � J2 -Mð Þ

� �
ð45Þ

is a 2� ðM � 1Þ matrix.

6. Robust third-order DMAs

Following the same ideas as before, it is easy to see that the
coefficients of the filter for the design of robust third-order DMAs
are given by

H2ðxÞ

H3ðxÞ

..

.

HMðxÞ

2
666666664

3
777777775
¼ !T

3ðxÞ !3ðxÞ!T
3ðxÞ� ��1

b1
2|

�b2
2

�b3
2|

2
666664

3
777775 ð46Þ
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and

H1ðxÞ ¼ �
XM
i¼2

J0 -ið ÞHiðxÞ þ b0: ð47Þ

where

!3ðxÞ ¼
J1 -2ð Þ J1 -3ð Þ � � � J1 -Mð Þ
J2 -2ð Þ J2 -3ð Þ � � � J2 -Mð Þ
J3 -2ð Þ J3 -3ð Þ � � � J3 -Mð Þ

2
64

3
75 ð48Þ

is a 3� ðM � 1Þ matrix. Now, the number of microphones must be
at least equal to four.

The generalization of this approach to any order is straightfor-
ward. However, in practice, we almost never go beyond the third
order because of the white noise amplification problem.
Fig. 2. First-order supercardioid pattern.

Fig. 3. Second-order supercardioid pattern.
7. Simulations

In this section, we evaluate the performance of the proposed
DMAs through simulations. We always take the interelement spac-
ing d ¼ 1:5 cm and assume that the desired signal is at the endfire
direction. In the rest, we would like to design DMAs that have the
following first-, second-, and third-order frequency-independent
Chebyshev patterns:

BC;1ðhÞ¼0:414þ0:586cosh; ð49Þ
BC;2ðhÞ¼0:3095þ0:484coshþ0:2065cosð2hÞ; ð50Þ
BC;3ðhÞ¼0:2595þ0:4315coshþ0:2375cosð2hÞþ0:0715cosð3hÞ: ð51Þ
They are equivalent to the first-, second-, and third-order supercar-
dioid patterns [16]:

BD;1ðhÞ ¼ 0:414þ 0:586 cos h; ð52Þ
BD;2ðhÞ ¼ 0:103þ 0:484 cos hþ 0:413 cos2 h; ð53Þ
BD;3ðhÞ ¼ 0:022þ 0:217 cos hþ 0:475 cos2 hþ 0:286 cos3 h: ð54Þ
These supercardioid patterns are illustrated in Figs. 2–4.
Fig. 4. Third-order supercardioid pattern.

Fig. 5. Pattern of the traditional first-order DMA designed with the Jacobi–Anger
expansion. M ¼ 2; d ¼ 1:5 cm, and f ¼ 1 kHz.
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7.1. First-order DMAs

In the first set of simulations, we study the performance of the
first-order DMAs. First, we deal with the traditional first-order
DMA by setting M ¼ 2. The corresponding pattern and SNR gains
are presented in Figs. 5 and 6. Comparing Figs. 5 and 2, we can
see that the pattern of the traditional first-order DMA is very close
to the first-order supercardioid pattern, where the desired signal
from the endfire direction is perfectly preserved while the signals
from other directions are attenuated, especially the signals from
the angles 135� and 225�. From the SNR gains in Fig. 6, we can
see that the DF is constant and its value is around 5 dB while the
WNG is negative for most frequencies, indicating that the tradi-
tional first-order DMA has the problem of white noise amplifica-
tion. Then, by using more microphones (i.e., M ¼ 4 and M ¼ 6)
and minimum-norm filters, we derive robust first-order DMAs.
Their performance are plotted in Figs. 7–10. It is shown that the
Fig. 6. SNR gains of the traditional first-order DMA designed with the Jacobi–Anger
expansion: (a) DF and (b) WNG. M ¼ 2 and d ¼ 1:5 cm.

Fig. 7. Pattern of the robust first-order DMA designed with the Jacobi–Anger
expansion. M ¼ 4; d ¼ 1:5 cm, and f ¼ 1 kHz.
patterns of the robust first-order DMAs are similar to the pattern
of the traditional first-order DMA. Comparing the results in Figs. 6,
8, and 10, we can observe that the WNG improves significantly as
M increases from 2 to 6. This observation confirms that robust first-
order DMAs are more robust against white noise amplification
than the traditional first-order DMA.

For comparison, we also derived first-order DMAs with the
MacLaurin’s series and the frequency-independent supercardioid
pattern BD;1ðhÞ [6,8]. The results are presented in Figs. 11–16. Com-
paring them with the previous ones in Figs. 5–10, we can see that
the patterns of the DMAs based on the Jacobi–Anger expansion are
closer to the supercardioid patterns than the patterns of the DMAs
based on the MacLaurin’s series. To better illustrate this superior-
ity, we put the patterns of the DMAs based on the Jacobi–Anger
Fig. 8. SNR gains of the robust first-order DMA designed with the Jacobi–Anger
expansion: (a) DF and (b) WNG. M ¼ 4 and d ¼ 1:5 cm.

Fig. 9. Pattern of the robust first-order DMA designed with the Jacobi–Anger
expansion. M ¼ 6; d ¼ 1:5 cm, and f ¼ 1 kHz.



Fig. 10. SNR gains of the robust first-order DMA designed with the Jacobi–Anger
expansion: (a) DF and (b) WNG. M ¼ 6 and d ¼ 1:5 cm.

Fig. 11. Pattern of the traditional first-order DMA designed with the MacLaurin’s
series (blue solid), pattern of the traditional first-order DMA designed with the
Jacobi–Anger expansion (red dashed), and desired first-order supercardioid pattern
(green dashdot). M ¼ 2; d ¼ 1:5 cm, and f ¼ 1 kHz.

Fig. 12. SNR gains of the traditional first-order DMA designed with the MacLaurin’s
series: (a) DF and (b) WNG. M ¼ 2 and d ¼ 1:5 cm.

Fig. 13. Pattern of the robust first-order DMA designed with the MacLaurin’s series
(blue solid), pattern of the robust first-order DMA designed with the Jacobi–Anger
expansion (red dashed), and desired first-order supercardioid pattern (green
dashdot). M ¼ 4; d ¼ 1:5 cm, and f ¼ 1 kHz.
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expansion and the desired supercardioid pattern into Figs. 11, 13,
and 15. In addition, the DMAs designed with the Jacobi–Anger
expansion are superior in terms of DF and WNG as shown in
Figs. 10 and 16 (for M ¼ 6). This superiority is more obvious when
M ¼ 6 and f > 2 kHz. This result may be explained as follows.
When M is large and the frequency is high, the exponent of
e|ðm�1Þxs0 cos h for m > 1 may be far away from zero. In this case,
the MacLaurin’s series approximation is very inaccurate, whereas
the approximation based on the Jacobi–Anger expansion can still
perform well. Therefore, we can claim that the Jacobi–Anger
expansion is preferred in the design of DMAs.
7.2. Second-order DMAs

The performance of the second-order DMAs is investigated in
this second set of simulations. We first plot, in Figs. 17 and 18,
the performance of the traditional second-order DMA (with
M ¼ 3). We can see that its pattern is similar to the second-order
supercardioid pattern in Fig. 3, in that the desired signal from the
endfire direction is well preserved while the signals from other
directions are well attenuated. We can also see that the traditional
second-order DMA gives a constant DF a bit higher than 8 dB, but
there is white noise amplification. Comparing the WNGs in Figs. 18



Fig. 14. SNR gains of the robust first-order DMA designed with the MacLaurin’s
series: (a) DF and (b) WNG. M ¼ 4 and d ¼ 1:5 cm.

Fig. 15. Pattern of the robust first-order DMA designed with the MacLaurin’s series
(blue solid), pattern of the robust first-order DMA designed with the Jacobi–Anger
expansion (red dashed), and desired first-order supercardioid pattern (green
dashdot). M ¼ 6; d ¼ 1:5 cm, and f ¼ 1 kHz.

Fig. 16. SNR gains of the robust first-order DMA designed with the MacLaurin’s
series: (a) DF and (b) WNG. M ¼ 6 and d ¼ 1:5 cm.

Fig. 17. Pattern of the traditional second-order DMA designed with the Jacobi–
Anger expansion. M ¼ 3; d ¼ 1:5 cm, and f ¼ 1 kHz.

L. Zhao et al. / Applied Acoustics 110 (2016) 194–206 201
and 6, we can easily observe that the problem of white noise
amplification, especially at low frequencies, becomes more serious
as the order of the traditional DMA increases from 1 to 2. Then, we
derive robust second-order DMAs by setting the number of micro-
phones to M ¼ 5 and M ¼ 8, respectively. The corresponding pat-
terns and SNR gains are plotted in Figs. 19–22. It is seen that
increasing the value of M improves the WNG considerably while
the pattern and the DF are not that much affected. For example,
at 500 Hz, for M ¼ 3, the WNG is equal to �35 dB while it is equal
to �10 dB for M ¼ 8; this represents an improvement of 25 dB. The
DF, on the other hand, is identical for both values of M at that
frequency.
7.3. Third-order DMAs

Finally, we evaluate the performance of the third-order DMA by
setting the number of microphones to M ¼ 4;M ¼ 7, and M ¼ 10,
respectively. As shown in Figs. 23–28, the number of microphones
greatly influences the performance of the third-order DMA in a
similar way as it does to the performance of the first- and
second-order DMAs, i.e., the WNG is significantly improved while
the pattern and the DF do not change much as M increases. There-
fore, with a larger number of microphones, the proposed third-
order DMA can be more robust against white noise amplification.
8. Conclusions

In this paper, we have focused on a new way to design DMAs.
Based on the Jacobi–Anger expansion and the frequency-



Fig. 18. SNR gains of the traditional second-order DMA designed with the Jacobi–
Anger expansion: (a) DF and (b) WNG. M ¼ 3 and d ¼ 1:5 cm.

Fig. 19. Pattern of the robust second-order DMA designed with the Jacobi–Anger
expansion. M ¼ 5; d ¼ 1:5cm, and f ¼ 1 kHz.

Fig. 20. SNR gains of the robust second-order DMA designed with the Jacobi–Anger
expansion: (a) DF and (b) WNG. M ¼ 5 and d ¼ 1:5 cm.

Fig. 21. Pattern of the robust second-order DMA designed with the Jacobi–Anger
expansion. M ¼ 8; d ¼ 1:5 cm, and f ¼ 1 kHz.
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independent Chebyshev patterns, we derived the traditional (non-
robust) first-, second-, and third-order DMAs. Simulation results
showed that the traditional DMAs with this approach achieve large
SNR gains in diffuse noise, but at the expense of white noise ampli-
fication, like in all conventional DMAs. We also derived robust
DMAs by using more microphones and minimum-norm filters.
These DMAs were verified, through many simulations, to have sig-
nificantly higher WNGs than the traditional DMAs. In addition, we
also compared, by way of simulations, this new method to the
recently proposed one based on the MacLaurin’s series approxima-
tion. All our results show that the new one has much better perfor-
mance; this advantage becomes more noticeable when the number
of microphones is large and the frequency is high.
Appendix A

In this section, we prove that the Jacobi–Anger expansion is the
optimal approximation of e|-m cos h in the mean-squared error (MSE)
sense. But before presenting the proof, we define two useful Bessel
functions.

The Bessel function of the first kind is [18]

JnðzÞ ¼
1
2
z

� �nX1
k¼0

� 1
4 z

2
	 
k

k!C nþ kþ 1ð Þ ; ð55Þ

where n and z are the order and variable, respectively. The modified
Bessel function of the first kind is [18]



Fig. 22. SNR gains of the robust second-order DMA designed with the Jacobi–Anger
expansion: (a) DF and (b) WNG. M ¼ 8 and d ¼ 1:5 cm.

Fig. 23. Pattern of the traditional third-order DMA designed with the Jacobi–Anger
expansion. M ¼ 4; d ¼ 1:5 cm, and f ¼ 1 kHz.
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InðzÞ ¼ 1
2
z

� �nX1
k¼0

1
4 z

2
	 
k

k!C nþ kþ 1ð Þ ; ð56Þ

and its integral representation is

InðzÞ ¼ 1
p

Z p

0
ez cos h cos nhð Þdh: ð57Þ

It can be checked that

In |zð Þ ¼ |nJnðzÞ: ð58Þ
We recall that the exponential function e|-m cos h can be approxi-
mated by [6,8]

e|-m cos h ¼ lim
N!1

XN
n¼0

an cosn h; ð59Þ
where N is the approximation order and an;n ¼ 0;1; . . . ;N are com-
plex coefficients. Thanks to the trigonometric identities, the expres-
sion in (59) can also be written as

e|-m cos h ¼ lim
N!1

XN
n¼0

cn cos nhð Þ; ð60Þ

where cn;n ¼ 0;1; . . . ;N are complex coefficients. Here, we use (60)
to derive the optimal approximation of e|-m cos h in the MSE sense.

Based on (60) and assuming that h is a real random variable, we
define the MSE criterion of the Nth-order approximation as

MSEðNÞ ¼ E e|-m cos h �
XN
n¼0

cn cos nhð Þ
�����

�����
2

2
4

3
5: ð61Þ

Our goal is to find the coefficients cn;n ¼ 0;1; . . . ;N in such a way
that MSEðNÞ is minimized. Mathematically, this is equivalent to

min
c0 ;c1 ;...;cN

MSEðNÞ ¼ min
c0 ;c1 ;...;cN

E e|-m cos h �
XN
n¼0

cn cos nhð Þ
�����

�����
2

2
4

3
5: ð62Þ

First, we consider the first-order approximation. By setting
N ¼ 1 in (61), we have

MSEð1Þ ¼ E e|-m cos h � c0 � c1 cos h
�� ��2h i

¼ E e|-m cos h � c0 � c1 cos h
	 


e�|-m cos h � c�0 � c�1 cos h
	 
� �

ð63Þ
To obtain the minimum value of MSEð1Þ, we compute the gradients
of MSEð1Þ with respect to c�n;n ¼ 0;1, and equate the results to zero,
i.e.,

@MSEð1Þ
@c�0

¼ �E e|-m cos h	 
þ c0 þ c1E cos hð Þ ¼ 0 ð64Þ

and

@MSEð1Þ
@c�1

¼ �E e|-m cos h cos h
	 
þ c0E cos hð Þ þ c1E cos2 h

	 
 ¼ 0: ð65Þ

Using (55)–(57) and assuming that h is uniformly distributed in the
interval 0;p½ �, we can compute the expectations in (64) and (65) as

E cos hð Þ ¼ 1
p

Z p

0
cos hdh ¼ 0; ð66Þ

E cos2 h
	 
 ¼ 1

p

Z p

0
cos2 hdh ¼ 1

p

Z p

0

1
2

1þ cos 2hð Þ½ �dh ¼ 1
2
; ð67Þ

E e|-m cos h	 
 ¼ 1
p

Z p

0
e|-m cos hdh ¼ I0 |-mð Þ ¼ J0 -mð Þ; ð68Þ

E e|-m cos h cos h
	 
 ¼ 1

p

Z p

0
e|-m cos h cos hdh ¼ I1 |-mð Þ ¼ |J1 -mð Þ: ð69Þ

Substituting (66)–(69) into (64) and (65), we obtain

c0 ¼ J0 -mð Þ; ð70Þ
c1 ¼ 2|J1 -mð Þ: ð71Þ
As a result, the optimal first-order approximation of e|-m cos h is

e|-m cos h ¼ J0 -mð Þ þ 2|J1 -mð Þ cos h: ð72Þ
Now, we consider the second-order approximation, i.e., N ¼ 2.

From (61), we have

MSEð2Þ ¼ E e|-m cos h � c0 � c1 cos h� c2 cos 2hð Þ�� ��2h i
¼ E e|-m cos h � c0 � c1 cos h� c2 cos 2hð Þ� �

e�|-m cos h�

� c�0 � c�1 cos h� c�2 cos 2hð Þ��: ð73Þ



Fig. 24. SNR gains of the traditional third-order DMA designed with the Jacobi–
Anger expansion: (a) DF and (b) WNG. M ¼ 4 and d ¼ 1:5 cm.

Fig. 25. Pattern of the robust third-order DMA designed with the Jacobi–Anger
expansion. M ¼ 7; d ¼ 1:5 cm and f ¼ 1 kHz.

Fig. 26. SNR gains of the robust third-order DMA designed with the Jacobi–Anger
expansion: (a) DF and (b) WNG. M ¼ 7 and d ¼ 1:5 cm.

Fig. 27. Pattern of the robust third-order DMA designed with the Jacobi–Anger
expansion. M ¼ 10; d ¼ 1:5 cm and f ¼ 1 kHz.
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By computing the gradients of MSEð2Þ with respect to c�n;n ¼ 0;1;2
and equating the results to zero, we get

@MSEð2Þ
@c�0

¼ �E e|-m cos h	 
þ c0 þ c1E cos hð Þ þ c2E cos 2hð Þ½ � ¼ 0;

ð74Þ

@MSEð2Þ
@c�1

¼ �E e|-m cos h cos h
	 
þ c0E cos hð Þ þ c1E cos2 h

	 

þ c2E cos 2hð Þ cos h½ � ¼ 0; ð75Þ

@MSEð2Þ
@c�2

¼ �E e|-m cos h cos 2hð Þ� �þ c0E cos 2hð Þ½ �

þ c1E cos h cos 2hð Þ½ � þ c2E cos2 2hð Þ� � ¼ 0: ð76Þ
The expectations in (74)–(76) can be computed as

E cos 2hð Þ½ � ¼ 1
p

Z p

0
cos 2hð Þdh ¼ 0; ð77Þ

E cos 2hð Þ cos h½ � ¼ 1
p

Z p

0
cos 2hð Þ cos hdh

¼ 1
p

Z p

0

1
2

cos hþ cos 3hð Þ½ �dh ¼ 0; ð78Þ

E cos2 2hð Þ� � ¼ 1
p

Z p

0
cos2 2hð Þdh

¼ 1
p

Z p

0

1
2

1þ cos 4hð Þ½ �dh ¼ 1
2
; ð79Þ

E e|-m cos h cos 2hð Þ� � ¼ 1
p

Z p

0
e|-m cos h cos 2hð Þdh

¼ I2 |-mð Þ ¼ �J2 -mð Þ: ð80Þ



Fig. 28. SNR gains of the robust third-order DMA designed with the Jacobi–Anger
expansion: (a) DF and (b) WNG. M ¼ 10 and d ¼ 1:5 cm.

Fig. 29. White noise gain of the DMAs designed with the Jacobi–Anger expansion as
a function of the number of microphones. d ¼ 1:5 cm and f ¼ 1 kHz.

Fig. 30. The denominator of the white noise gain with the first-order DMA based on
the Jacobi–Anger expansion (supercardioid). d ¼ 1:5 cm and f ¼ 1 kHz.
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Plugging (66)–(69), (77)–(80) into (74)–(76), we get

c0 ¼ J0 -mð Þ; ð81Þ
c1 ¼ 2|J1 -mð Þ: ð82Þ
c2 ¼ �2J2 -mð Þ: ð83Þ
Therefore, the optimal second-order approximation of e|-m cos h is

e|-m cos h ¼ J0 -mð Þ þ 2|J1 -mð Þ cos h� 2J2 -mð Þ cos 2hð Þ: ð84Þ
Using the same methodology, we can find that the optimal Nth-
order approximation of e|-m cos h is

e|-m cos h ¼ J0 -mð Þ þ 2
XN
n¼1

|nJn -mð Þ cos nhð Þ: ð85Þ

It is clear that the previous expression corresponds to the Jacobi–
Anger expansion [Eq. (24)], verifying that the Jacobi–Anger expan-
sion is the optimal approximation of e|-m cos h in the MSE sense.

Appendix B

In this section, we will demonstrate that the white noise gain of
the proposed DMAs is generally an increasing function of M, the
number of microphones. In Fig. 29, one can see that the white noise
gain improves when M increases, confirming the merit of using
more microphones and the minimum-norm filters in combating
the white noise amplification problem. However, when M is large
(e.g., M is greater than 10 in the first-order DMA), the additional
performance gain is not significant while the practical cost can
be. In the following, we will take the first-order DMA as an exam-
ple and present more explanations.

We recall that the white noise gain of the first-order DMA has
the form:

Gwn hðxÞ½ � ¼
hHðxÞd x;0ð Þ
��� ���2

hHðxÞhðxÞ
¼ BM;1 hðxÞ; 0½ ��� ��2

hHðxÞhðxÞ
; ð86Þ

where BM;1 hðxÞ;0½ � is the beampattern of the first-order DMA at
h ¼ 0, and it is an approximation of BM hðxÞ;0½ �. Since the beampat-
tern of the first-order DMA is frequency independent, i.e.,
BM;1 hðxÞ; h½ � ¼ BC;1ðhÞ ¼ b0 þ b1 cos h; ð87Þ

we have

BM;1 hðxÞ;0½ � ¼ b0 þ b1: ð88Þ

Substituting (88) into (86), we can rewrite the white noise gain of
the first-order DMA as

Gwn hðxÞ½ � ¼ b0 þ b1j j2
hHðxÞhðxÞ

: ð89Þ

Using (36) and (37), we can express the denominator of the white
noise gain as

hHðxÞhðxÞ ¼
XM
m¼1

HmðxÞj j2 ¼ b2
0 þ

b2
1

4
1PM

m¼2J
2
1 -mð Þ

þ b2
1

4

PM
m¼2J0 -mð ÞJ1 -mð Þ

h i2
PM

m¼2J
2
1 -mð Þ

h i2 : ð90Þ

Fig. 30 shows that hHðxÞhðxÞ is a decreasing function of M
(M P 2) and, therefore, it can be deduced from (89) that the white
noise gain of the first-order DMA is, in general, an increasing
function of M (M P 2).

The results of the white noise gain for the second-order and
third-order DMAs can be explained similarly, but since the
equations are too lengthy, we do not present them here.
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