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a b s t r a c t 

We propose a novel iterative mask estimation (IME) framework to improve the state-of-the-art complex Gaussian 

mixture model (CGMM)-based beamforming approach in an iterative manner by leveraging upon the complemen- 

tary information obtained from different deep models. Although CGMM has been recently demonstrated to be 

quite effective for multi-channel, automation speech recognition (ASR) in operational scenarios, the correspond- 

ing mask estimation, however, is not always accurate in adverse environments due to the lack of prior or context 

information. To address this problem, in this study, a neural-network-based ideal ratio mask estimator learned 

from a multi-condition data set is first adopted to incorporate prior information, obtained from the speech/noise 

interactions and the long acoustic context, into CGMM-based beamformed speech that has a higher signal-to-noise 

ratio (SNR) than the original noisy speech signal. Next, to further utilize the rich context information in deep 

acoustic and language models, voice activity detection information, obtained from speech recognition results, is 

then used to refine mask estimation, yielding a significant reduction in insertion errors. During testing on the 

recently launched CHiME-4 Challenge ASR task of recognizing 6-channel microphone array speech, the proposed 

IME approach significantly and consistently outperforms the CGMM approach under different configurations, 

with relative word error rate reductions ranging from 20% to 30%. Furthermore, the IME approach plays a key 

role in the ensemble system that achieves the best performance in the CHiME-4 Challenge. 
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. Introduction 

Recently, hands-free speech communication is in high demand for

any applications, such as multi-microphone portable devices and au-

omatic speech recognition (ASR) systems, due to the provided conve-

ience and flexibility. However, the ASR performance is often severely

egraded when the target speech signals are corrupted by interfering

peakers, background noises and room reverberation. Speech enhance-

ent algorithms that reduce noise without considerably damaging the

arget speech are therefore highly desired for improving the ASR per-

ormance and robustness. Over the past several decades, many algo-

ithms have been developed, and they can be divided into two broad

ategories. The first is single-channel speech enhancement, which ex-

loits only the temporal and spectral information. Representative al-

orithms in this category include spectral subtraction ( Boll, 1979 ),

iener filtering ( Lim and Oppenheim, 1979 ), minimum mean-square

rror (MMSE) estimator ( Ephraim and Malah, 1984 ), and the optimally
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odified log-spectral amplitude (OM-LSA) speech estimator ( Cohen and

erdugo, 2001 ). 

The second category is multi-channel speech enhancement, which

ses spatial information in addition to the temporal and spectral in-

ormation. Representative algorithms in this category include multi-

hannel Wiener filtering ( Meyer and Simmer, 1997; Spriet et al., 2004 ),

lind source separation ( Jutten and Herault, 1991; Buchner et al., 2005;

ang et al., 2011 ), and beamforming ( Van Veen and Buckley, 1988;

ox et al., 1987; Hoshuyama et al., 1999; Talmon et al., 2009; Souden

t al., 2010; Krueger et al., 2011; Higuchi et al., 2016 ). Beamforming

s a popular approach for multi-channel speech enhancement, where its

erformance dependents on constructing a steering vector that repre-

ents the acoustic propagation ( Veen and Buckley, 1988 ). Convention-

lly, the beamformers utilizing a priori knowledge, e.g., the geometry of

he microphone array and the direction of arrival (DOA) information,

o construct the steering vector. They may work well for simulated data

here the prior information is accessible and accurate, e.g., the base-

ine beamformer ( Anguera et al., 2007 ) provided by the CHiME-3 chal-

enge ( Barker et al., 2017 ). However, the robustness of such beamform-
mber 2018 
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rs often becomes an issue in real-life environments where the acous-

ic propagation information is unknown and is difficult to estimate ac-

urately. Recently, a complex Gaussian mixture model (CGMM)-based

ime-frequency (T-F) mask estimation algorithm was used to steer a

eamformer in Higuchi et al. (2016) , which was demonstrated to be

eneficial to ASR in RealData scenarios, e.g., in some top-performing

HiME-4 systems ( Tu et al., 2017; Menne et al., 2016 ). 

On the other hand, deep learning techniques are becoming increas-

ngly popular in speech recognition areas ( Hinton et al., 2012; Mo-

amed et al., 2012 ). Different deep neural network (DNN) architec-

ures have been adopted in single-channel speech enhancement for

SR, and they have demonstrated a significant increase in recog-

ition performance ( Du et al., 2016a; Weninger et al., 2015; Tu

t al., 2015; Gao et al., 2015 ). Some preliminary studies on using

eep learning approaches for multi-channel speech enhancement have

lso been conducted. In Gao et al. (2016) , the signals obtained us-

ng multi-channel speech enhancement algorithms were directly used

s the input signals for neural-network-based enhancement models.

n Heymann et al. (2015) , bidirectional long short-term memory

BLSTM) ( Hochreiter and Schmidhuber, 1997 ) was adopted to estimate

ignal statistics to steer the beamformer for multi-channel speech en-

ancement. It was also demonstrated in Nugraha et al. (2016) that

eep neural network (DNN)-based source spectra estimation is helpful

or steering a multi-channel filter. In Sainath et al. (2017) , they pro-

osed multichannel enhancement jointly with acoustic modeling in a

eep neural network framework. The raw time-domain waveform was

irectly modeled by beamforming, which leverages upon differences in

he fine time structure of the signal at different microphones to filter en-

rgy arriving from different directions. In Ochiai et al. (2017) , an end-to-

nd framework was proposed by encompassing microphone array signal

rocessing for noise suppression and speech enhancement within the

coustic encoding network, allowing the beamforming components to

e optimized jointly within the recognition architecture to improve the

nd-to-end speech recognition objective. 

In this paper, we propose an iterative mask estimation approach

o beamforming by leveraging the information obtained via iterative

eural-network-based ideal ratio mask (IRM) ( Wang and Wang, 2013 )

stimation and ASR-based voice activity detection (VAD) ( Sohn et al.,

999 ). The proposed approach has four major contributions to front-

nd beamforming. First, we use the estimated IRM based on the trained

N model to improve the time-frequency masks estimated using the

GMM-based approach. The CGMM parameters are optimized based on

he maximum a posteriori (MAP) estimation ( Gauvain and Lee, 1994 ),

nd the parameters are generally adjusted based on the estimated speech

resence probability at each T-F unit. Thus, we expect that the approach

s insensitive to non-stationary noise and also robust to stationary noise.

he acoustic context information, including the full frequency band and

xpanding context frames, can be appropriately utilized for NN-based

RM estimation, avoiding misjudgment in non-stationary noise. Second,

n ASR-based VAD from the segmentation results of the recognizer is

lso used to improve beamforming. The ASR-based VAD can directly

rovide speech and non-speech segmentation information from ASR,

hich makes our beamformed speech adapt to ASR. Third, the esti-

ated IRM and ASR-based VAD are updated with better beamformed

peech such that they can form a closed-loop optimization by leverag-

ng the information of NN-based IRM and ASR-based VAD. Finally, our

pproach combines the CGMM-based approach which is an adaptive al-

orithm to test data, a powerful ability of learning NNs, and the feedback

f recognition results to iteratively improve the beamforming perfor-

ance. Several factors can affect the beamforming and ASR performance

f the proposed system, including the number of closed-loop iterations,

ifferent NN architectures (including the DNNs and LSTMs used to esti-

ate the T-F mask), and the combination of the estimated masks, which

ill also be investigated in this paper. In Heymann et al. (2017) and

iao et al. (2017) , the NN-based mask estimator was tuned using an

SR-based cost function, and the front-end enhancement was combined
32 
ith a back-end recognizer. Although the ASR information are also uti-

ized in these methods, the main motivation, the specific information

dopted, and the way to combine multiple types of information in our

pproach are quite different. Moreover, the experiments show that our

pproach can achieve better results on the CHiME-4 challenge task ac-

ording to Heymann et al. (2017) and Xiao et al. (2017) . 

This work is comprehensively extended from our recent paper

u et al. (2017) with new contributions listed as follows. First,

u et al. (2017) only briefly describes the proposed multi-channel ASR

ystem for CHiME-4 evaluation with both front-end and back-end de-

ign. However, in this study we focus on elaborating our proposed IME-

ased beamformer more generally in Section 2 , including, in detail,

ask-based beamforming in Section 3 , the motivations of the proposed

ME algorithm in Section 4 . Second, in Section 4.2 , LSTM-based IRM es-

imation is also adopted and its complementarity with DNN-based IRM

stimation via ensemble systems is shown while Tu et al. (2017) only

onsiders DNN-based IRM estimation to improve mask estimation. Fi-

ally, for the experimental design, this work gives detailed descriptions

f the comparisons and analyses among the state-of-the-art beamformers

nd the proposed IME-based beamformer from different perspectives.

ut Tu et al. (2017) lists very limited and the best results of integrated

ront-end/back-end systems to show the promising system performance

or the CHiME-4 challenge without giving any detailed analyses. 

The remainder of this paper is organized as follows. In Section 2 , we

resent an overview of the system. In Section 3 , we provide a brief in-

roduction to the conventional beamformers. In Section 4 , we present a

etailed description of our proposed iterative mask estimation approach.

ection 5 presents the ASR performance of our proposed approach on

he CHiME-4 challenge. Finally, we summarize our findings in Section 6 .

. The IME framework 

The overall system flowchart is shown in Fig. 1 . For the IRM es-

imation, the NN-IRM models are trained using the log-power spec-

ral (LPS) features of data from the reference channel of the micro-

hone array as the input features and the corresponding IRMs as the

utput features. The LPS features that offer perceptually relevant pa-

ameters are adopted ( Xie and Van Compernolle, 1994; Du and Huo,

008; Wan and Nelson, 1998 ), while IRM is interpreted as the speech

resence probability at each time-frequency point in speech separa-

ion ( Hummersone et al., 2014 ). For ASR, both log mel-filterbank

LMFB) and feature-space maximum likelihood regression (fMLLR) fea-

ures ( Du et al., 2015 ) are adopted as acoustic features. Then, acoustic

odels based on DNN or deep CNN (DCNN) with hidden Markov models

HMMs) are trained using beamformed data and data from all channels.

inally, the LSTM-based language models are constructed. For more ASR

etails, the readers can refer to Du et al. (2015, 2016b) . 

The IME-based beamformer is divided into four successive steps,

amely, beamforming initialization, NN-based signal statistics (IRM

nd ASR-based VAD) estimation, beamforming, and recognition. First,

eamformed speech is initialized, and a T-F mask of test speech is ob-

ained by CGMM-based beamforming with poorly estimated initial prior

alues. Then, the IRM estimated using a trained NN-IRM model is used

o improve the initial mask, where the NN-IRM model uses the LPS fea-

ures of the initial beamformed speech and the ASR-based VAD infor-

ation from the segmentation results of a recognizer with beamformed

peech. Next, the improved mask is adopted to estimate the initial val-

es of the CGMM-based approach to generate the estimated mask that

teers the beamformer, thereby obtaining the beamformed speech for

SR ( Nakatani et al., 2017 ). Finally, multiple acoustic models are first

used at the state level, and then first-pass decoding is performed with

he HMM and 3-gram to generate lattices as the hypotheses, which sub-

equently serve for the second-pass decoding with an LSTM-based LM.

he details are presented in the following subsections. 
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Fig. 1. A block diagram of the entire system, which consists of front-end beamforming and back-end acoustic/language models. 
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. Background 

In this section, we first present the signal model and then briefly in-

roduce the well-known time-frequency-mask-based beamformer, which

erves as the basis for the proposed system. 

.1. Signal model 

Given speech s ( t ) in the target speaker position, the signals re-

eived by an array of J microphones are time-delayed and amplitude-

ttenuated versions of s ( t ) with extra noises and interferences, which

re modeled in the time domain as follows: 

 𝑖 ( 𝑡 ) = 𝑔 𝑖 𝑠 ( 𝑡 − 𝜏𝑖 ) + 𝑛 𝑖 ( 𝑡 ) = 𝑥 𝑖 ( 𝑡 ) + 𝑛 𝑖 ( 𝑡 ) , (1) 

here 𝑖 = 1 , 2 , … , 𝐽 ; 𝜏 i denotes the time that it takes for the sound to

ropagation from the speaker location to the i th microphone location;

 i is the acoustic impulse response to model the effects of propagation at-

enuation, the amplification gain of the corresponding microphone set-

ing and the directionality of the source and the i th microphone; x i ( t ) is

he convolved speech signal at the i th microphone; and n i ( t ) is the noise

lus inference signal received by the i th microphone. In the short-time

ourier transform (STFT) domain ( Mcaulay and Quatieri, 1986 ), the sig-

al model in (1) can be expressed as follows ( Zhang et al., 2008 ): 

 ( 𝑘, 𝑙) = 𝒈 ( 𝑘 ) 𝑠 ( 𝑘, 𝑙) + 𝒏 ( 𝑘, 𝑙) = 𝒙 ( 𝑘, 𝑙) + 𝒏 ( 𝑘, 𝑙) , (2) 

here k is the frequency bin index; l is the frame index; x ( k, l ) and n ( k, l )

re J -dimensional complex vectors that consist of the STFT-domain rep-

esentations of x i ( t ) and n i ( t ), respectively; s ( k, l ) is the STFT of s ( t ); and

 ( k ) is the signal propagation vector, which is in the same form as the

o-called steering vector in the array beamforming literature ( Veen and

uckley, 1988 ). We assume that the analysis window is longer than all

he channel impulse responses and that n ( k, l ) is relatively stationary. 

.2. MVDR beamformer 

The MVDR beamformer applies a set of weights w ( k ) to the vector

 ( k, l ) such that the variance of the noise component in the beamformer’s

utput is minimized subject to a constraint of unity gain in the target

irection, i.e., 

in 
𝒘 ( 𝑘 ) 

𝒘 

𝐻 ( 𝑘 ) 𝑹 𝒏𝒏 ( 𝑘 ) 𝒘 ( 𝑘 ) , s . t. 𝒘 

𝐻 ( 𝑘 ) 𝒈 ( 𝑘 ) = 1 , (3) 

here the superscript H denotes the conjugate transpose operator and 

 𝒏𝒏 ( 𝑘 ) = 𝐸 

[
𝒏 ( 𝑘, 𝑙) 𝒏 𝐻 ( 𝑘, 𝑙) 

]
(4) 

s the spatial correlation matrix of the noise and interference. A closed-

orm solution of Eq. (3) is the following ( Capon, 1969 ): 

 ( 𝑘 ) = 

𝑹 

−𝟏 
𝒏𝒏 

( 𝑘 ) 𝒈 ( 𝑘 ) 
−𝟏 . (5) 
𝒈 𝐻 ( 𝑘 ) 𝑹 

𝒏𝒏 
( 𝑘 ) 𝒈 ( 𝑘 ) m  

33 
.3. Beamforming based on time-frequency mask 

Implementing the MVDR beamformer given in (5) requires knowl-

dge of the signal propagation vector g ( k ), which is not accessible in

ractical environments. A de facto standard practice in real applications

s to replace this propagation vector with a steering vector. However,

his replacement may lead to significant performance degradation be-

ause there is always a mismatch between the steering and propagation

ectors. In the literature, substantial efforts have been devoted to de-

eloping adaptive beamformers that are robust to uncertainty in DOA

 Keyi et al., 2005; Zhao et al., 2014 ) and microphone gains ( Zhao et al.,

015 ). In this work, we adopt the so-called time-frequency-mask-based

eamformer ( Yoshioka et al., 2015; Higuchi et al., 2016 ), which uses a

pectral-mask-based steering vector without relying on the a prior infor-

ation of either DOA or acoustic propagation. The principal eigenvec-

or of the spatial correlation matrix of the target speech signal is directly

sed as an estimate of the steering vector. The spatial correlation matrix

an be estimated using a time-frequency mask as follows. 

Let us assume that the speech signal and noise are statistically in-

ependent. The spatial correlation matrix of x ( k, l ), i.e., R xx ( k ), can be

stimated as follows: 

 𝒙𝒙 ( 𝑘 ) = 

𝑇 ∑
𝑙=1 

𝑀( 𝑘, 𝑙) 𝒚 ( 𝑘, 𝑙) 𝒚 𝐻 ( 𝑘, 𝑙) , (6) 

here M ( k, l ) denotes the time-frequency mask that represents the prob-

bility of the T-F unit ( k, l ) containing the target speech signal. The

uantity 1 − 𝑀( 𝑘, 𝑙) then represents the probability of the T-F unit ( k,

 ) containing only noise. Thus, the spatial correlation matrix of n ( k, l ),

 nn ( k ), can be estimated as follows: 

 𝒏𝒏 ( 𝑘 ) = 

𝑇 ∑
𝑙=1 

[ 1 − 𝑀( 𝑘, 𝑙) ] 𝒚 ( 𝑘, 𝑙) 𝒚 𝐻 ( 𝑘, 𝑙) . (7) 

ased on the assumption that speech and noise are not correlated and

he cross term can be ignored, the R xx ( k ) matrix can be written accord-

ng to the signal model given in Eq. (2) as follows: 

 𝒙𝒙 ( 𝑘 ) = 𝐸[ 𝒙 ( 𝑘, 𝑙) 𝒙 𝐻 ( 𝑘, 𝑙)] = 𝜎2 
𝑠 
( 𝑘 ) 𝒈 ( 𝑘 ) 𝒈 𝐻 ( 𝑘 ) , (8) 

here 𝜎2 
𝑠 
( 𝑘 ) is the variance of s ( k, l ). Clearly, the positive semi-definite

atrix R xx ( k ) is of rank 1. Consequently, an estimate of the signal prop-

gation vector g ( k ) can be obtained by computing the principal eigen-

ector of the R xx ( k ) estimate from Eq. (6) ( Jones and Ratnam, 2009 ). 

The key to this approach becomes the unsupervised and accurate

stimation of the spectral masks that indicate the presence and absence

f speech T-F units. 

.4. CGMM-based time-frequency mask estimation 

In Higuchi et al. (2016) , an approach that uses a speech spectral

odel based on CGMM was proposed to estimate the time-frequency

asks. The parameters of the CGMM are full-rank spatial correlation
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Fig. 2. The framework of iterative mask estimation. 
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atrices, which provide some flexibility to address the spatial fluctu-

tion of the steering vector. The CGMM parameters, i.e., R xx ( k ) and
2 
𝑠 
( 𝑘 ) , can be estimated using the expectation-maximization (EM) algo-

ithm ( Higuchi et al., 2016 ) with poorly estimated initial prior values.

or example, the initial value of R xx ( k ) was set as the covariance ma-

rix of the observed signal, and R nn ( k ) was initialized using an identity

atrix. 

. Iterative mask estimation for beamforming 

In Section 3 , the estimation of the time-frequency masks is only based

n the statistical CGMM model. It is an algorithm that is adaptive to the

est signal, which is generally not sufficiently robust in adverse envi-

onments, particularly when there is burst-type noise. In this section,

e discuss NN-based IRM estimation and VAD based on ASR results

o improve the masks estimated using the CGMM-based approach. Our

xperimental results demonstrate that the improved masks can yield sig-

ificant improvement in the ASR performance. In the next three subsec-

ions, the procedure of iterative mask estimation is presented, followed

y the elaboration of the NN-based IRM estimation and ASR-based VAD

stimation. 

.1. The proposed iterative mask estimation procedure 

The iterative mask estimation consists of the following steps: 

Step 1: Estimate the initial mask for each T-F unit ( k, l ), denoted as

M CGMM 

( k, l ), using the CGMM-based approach. 

Step 2: Steer the beamformer with the estimated mask and obtain

the beamformed speech. 

Step 3: Feed the NN-IRM model with the beamformed speech from

Step 2 to estimate IRM, denoted as M ( k, l ). 
NN 

34 
Step 4: Perform the first-pass decoding with the beamformed speech

from Step 2 to get the ASR-based VAD, denoted as M ASR ( k, l ). 

Step 5: Combine M CGMM 

( k, l ) in Step 1 with M NN ( k, l ) in Step 3

or/and M ASR ( k, l ) in Step 4 to generate the improved mask. 

Repeat Steps 2–5 for N iterations. 

As an illustration in Fig. 2 , the solid-line linking modules correspond

o Steps 1–2 of the above procedure while the dotted-line linking mod-

les refer to Steps 3–5 , namely the combination of CGMM-based, NN-

ased and ASR-based masks. 

.2. Improving mask estimation by NN-based IRM 

First, we use an NN-IRM to predict the mask representing the speech

resence probability at every T-F unit given the input LPS features of en-

anced speech obtained at Step 2 in Section 4.1 . Acoustic context infor-

ation along both the time axis (with multiple neighboring frames) and

requency axis (with full frequency bins) can be fully exploited by the

N to obtain a good mask estimate in adverse environments, which is

trongly complementary with the conventional CGMM-based approach

o retain robustness. The estimated IRMs are restricted to be in the range

rom zero to one, which can be directly used to represent the speech

resence probability. In the training stage, the IRM as the learning tar-

et is defined as follows: 

 ref ( 𝑘, 𝑙) = 

√ 

𝑠 PS ( 𝑘, 𝑙)∕ 
[
𝑠 PS ( 𝑘, 𝑙) + 𝑛 PS ( 𝑘, 𝑙) 

]
, (9) 

here s PS ( k, l ) and n PS ( k, l ) are clean and noise versions of power spec-

ral features at the T-F unit ( k, l ). Because the training of this NN-IRM

odel requires a large amount of time-synchronized stereo data with

he IRM and LPS of enhanced training data pairs, the training data are

ynthesized by adding different types of noise to the clean speech ut-

erances with different SNR levels. Note that the specified SNR levels in
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Fig. 3. The architectures of DNN and LSTM for IRM estimation. 
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he training stage are expected to address the problem of SNR variation

n the test stage with real speech data. Then, the estimated M NN ( k, l ) is

ombined with M CGMM 

( k, l ) to yield an improved mask M 1 ( k, l ), i.e., 

 1 ( 𝑘, 𝑙) = 

√
𝑀 CGMM 

( 𝑘, 𝑙 ) 𝑀 NN ( 𝑘, 𝑙 ) . (10) 

his process can repeat iteratively following Steps 2–5 in Section 4.1 . 

To train the NN model, supervised fine-tuning is used to minimize

he mean squared error (MSE) between the NN-IRM output M NN ( k, l )

nd the reference IRM M ref ( k, l ), which is defined as 

 NN = 

∑
𝑘 

∑
𝑙 

[
𝑀 NN ( 𝑘, 𝑙) − 𝑀 ref ( 𝑘, 𝑙) 

]2 
. (11) 

his MSE is optimized using the stochastic gradient descent-based back-

ropagation method in a mini-batch mode. 

.2.1. Architecture of NN models 

The NN architecture is shown in Fig. 3 (DNN on the left-hand side

nd LSTM nn the right-hand side). The input layer of both the DNN and

STM is a 1799-dimensional vector of noisy LPS features with 7 frame

xpansions and 257 frequency bins. Each node of the output layer adopts

 sigmoid activation function. The estimated IRM at T-F unit ( k, l ) is

enoted as M NN ( k, l ). The three hidden layers of the DNN, each with

048 nodes, are fully connected (FC) with a sigmoid activation func-

ion, while two consecutive unidirectional LSTM layers, each with 1024

ells, are adopted. The key components, namely, memory cell state c l ,

nput gate i l , forget gate f l , and output gate o l , are shown in Fig. 3 . With

his architecture, the network can determine what information to store,

pdate, discard, and output. Furthermore, with a longer acoustic con-

ext of history and future information, the LSTM may be robust toward

on-stationary noises due to its ability to capture the inherent statistical

roperties of speech and noise. 
35 
.2.2. The ensemble of DNN-based and LSTM-based IRMs 

In Tu et al. (2016) , it was shown that different networks may have

 strong complementarity and that the corresponding ensemble can re-

ult in a considerable improvement in ASR performance. The main dif-

erence between the architectures of the DNN and LSTM models is that

STM introduces the concepts of memory cell and a series of gates to dy-

amically control the information flow. Thus, the information of neigh-

oring frames is fully utilized in training, whereas the DNN only uses

his information as input features. However, LSTM usually with a larger

umber of parameters than DNN can more easily result in overfitting

hen the training data are limited. In CHiME-4, the ASR performance

f the LSTM model is slightly worse than that of the DNN model for

nseen noise cases. The fusion of DNN- and LSTM-based IRM estimates

s conducted to further improve the mask estimation. Specifically, a lin-

ar combination of M DNN ( k, l ) from DNN and M LSTM 

( k, l ) from LSTM is

omputed as the ensemble IRM: 

 E ( 𝑘, 𝑙) = 𝛼2 𝑀 DNN 

( 𝑘, 𝑙) + (1 − 𝛼2 ) 𝑀 LSTM 

( 𝑘, 𝑙) , (12) 

here 𝛼 determines the balance between the masks estimated by the

wo networks. The value of 𝛼 is set to 0.5 in our experiments. 

Fig. 4 presents an utterance example from the RealData test set of

HiME-4 to illustrate the motivation of using NN-based IRM. Fig. 4 (a)

nd (b) plot the spectrograms from channel 0 (the close-talking micro-

hone to record the reference “clean ” speech) and channel 5 (one main

icrophone to record the noisy speech). The CGMM-based approach

learly plays only a limited role in reducing the non-stationary noise,

s shown in the marked regions in Fig. 4 (c). Fig. 4 (d) and (e) plot the

wo masks estimated by the same DNN model with channel 5 data and

GMM-based beamformed speech as the input of DNN, respectively.

omparing these two plots reveals that the mask estimated directly from

hannel 5 may misclassify the T-F region dominated by speech to non-

peech/noise [e.g., the circled region in Fig. 4 (d)], particularly in low

NR conditions, whereas the mask estimated from beamformed speech

an generate considerably better results. This result demonstrates the

uperiority of our approach. Finally, the mask estimated by LSTM with

GMM-based beamformed speech is plotted in Fig. 4 (f). This mask re-

ains the high-frequency parts of speech compared with the mask esti-

ated by the DNN, but it may misclassify some noise-only regions. This

esult illustrates the complementarity of the two estimated masks. 

.3. Improving mask estimation by ASR-based VAD 

In some adverse environments, the mask estimated by the CGMM-

r NN-based approaches may result in a high false-alarm probability,

isclassifying the T-F region dominated by noise, whereas the segmen-

ation results of the speech recognizer are more accurate to handle this

roblem by using considerably longer acoustic context information in

coustic and language models. Therefore, in our system, the VAD in-

ormation from the segmentation results of the speech recognizer using

eamformed speech at each frame is used to further improve the mask

stimation. The VAD-based mask at each T-F unit ( k, l ) from the ASR

esults is defined as 

 ASR ( 𝑘, 𝑙) 
{ 

= 1 if the 𝑙th frame is speech 

= 0 else 
. (13) 

hen, the improved mask using the M ASR ( k, l ) is obtained as 

 2 ( 𝑘, 𝑙) = 𝑀 CGMM 

( 𝑘, 𝑙 ) 𝑀 ASR ( 𝑘, 𝑙 ) . (14) 

ote that Eq. (14) only uses the ASR-based VAD information to im-

rove the CGMM-based mask. According to Step 5 in Section 4.1 , if

oth the NN-based mask and ASR-based mask are adopted, M CGMM 

( k, l )

n Eq. (14) should be replaced by M 1 ( k, l ), i.e., 

 3 ( 𝑘, 𝑙) = 𝑀 1 ( 𝑘, 𝑙 ) 𝑀 ASR ( 𝑘, 𝑙 ) . (15) 
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Fig. 4. The comparison of estimated masks from different approaches for an utterance of the CHiME-4 RealData test set. 
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imilar to M 1 ( k, l ), M 2 ( k, l ) and M 3 ( k, l ) can be iteratively refined by

epeating Steps 2–6 of Section 4.1 . 

Fig. 5 plots an utterance example from the RealData test set of

HiME-4 to illustrate the motivation for using ASR-based VAD informa-

ion. Fig. 5 (a) and (b) show the spectrograms of channel 0 and channel
36 
, respectively. Fig. 5 (c) is the combination of the CGMM-based mask

nd the DNN-based IRM, while Fig. 5 (d) adds the ASR-based VAD in-

ormation based on Eq. (15) . Based on Eqs. (13) –(15) , the VAD infor-

ation only affects the mask combination in the non-speech segmenta-

ions. Accordingly, the non-speech segmentations could be cleaner af-
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Fig. 5. The comparison of mask estimation with/without VAD information for an utterance of the CHiME-4 RealData test set. 
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1  
er IME-based beamforming with VAD information, as shown in Fig. 5 ,

hich can significantly reduce insertion errors. On the other hands, for

SR systems, it is possible to misrecognize the speech segments as non-

peech segments, thus yielding deletion errors. However, we observe

hat in most cases, these segmentations are with quite low SNRs, which

ppear as noise segmentations with very weak speech energy. Further-

ore, because these segmentations are already misrecognized by the

SR system in the first-pass decoding, the recognition results on these

egmentations would not be worse in the second-pass decoding. 

Actually our proposed IME is one general framework to adopt both

oft masks (CGMM-based and NN-based mask estimation between 0 and

 in the T-F bin level) and hard masks (ASR-based VAD for the binary

election of speech and non-speech in the frame level). The motivation

s for non-speech segmentations the hard/binary mask is exactly what

e need to select noise frames while for speech segmentations the soft

ask is more suitable due to the existence of both speech and noise in

-F bins. 

Please note that for the mask combination, we empirically use differ-

nt ways as in Eqs. (10) , (12) and (14) . For example, we use the arith-

etic mean in Eq. (12) to combine the masks in the similar dynamic

ange from NNs with different architectures. However, to combine the

GMM-based and NN-based masks, the geometric mean is adopted as

n Eq. (10) because NN-based mask values are often close to 0 at non-

peech T-F bins while CGMM-based mask values are quite large at some

on-speech T-F bins as shown in Fig. 4 . Finally, to combine the ASR-

ased mask defined in Eq. (13) , Eq. (14) is employed to perform as a

ard selection mechanism. 

. Experimental evaluation 

We now present the experimental evaluation of our framework in

he CHiME-4 task ( Vincent et al., 2016 ), which was designed to study

eal-world ASR scenarios where a person is talking to a mobile tablet

evice equipped with 6 microphones in a variety of adverse environ-

ents. Four conditions were selected: caf ́𝑒 (CAF), street junction (STR),

ublic transport (BUS), and pedestrian area (PED). For each case, two

ypes of noisy speech data were provided: RealData and SimData. Re-

lData were collected from speakers reading the same sentences from

he WSJ0 corpus ( Garofalo et al., 2007 ) in the four conditions. SimData

ere constructed by mixing clean utterances with environmental noise

ecordings using the techniques described in Vincent et al. (2007) . The

imData are used to train the DNN and LSTM for generating NN-based

RMs. 

For the ASR evaluation, three data sets were designed, namely, the

raining set, development set and test set. The development and test

ata consist of 410 and 330 utterances, respectively, with the same sen-

ence contents as the corresponding sets in the WSJ0 5k task, each read

y four different speakers in one randomly selected condition. This re-

ulted in 1640 (410 × 4) development and 1320 (330 × 4) test utter-

nces of speech data in total. Similarly, simulated data were generated

or the development and test sets. The training data include 1600 real

oisy utterances from the combinations of four speakers each reading

00 utterances in four conditions (i.e., 4 × 4 × 100) and 7138 simu-

ated utterances from the WSJ0 training set. CHiME-4 offers three tasks

1-channel, 2-channel, and 6-channel) with different testing scenarios.

n this paper, we focus only on the 6-channel case to make the paper

oncise, and more details about our back-end system, acoustic models

nd language model can be found in Tu et al. (2017) . The readers are re-

erred to Barker et al. (2017) and Vincent et al. (2016) for more detailed

nformation regarding CHiME-4. 

.1. Experiments on CGMM-based beamformer 

In this subsection, the baseline ASR system officially provided in

incent et al. (2016) is used to evaluate the different beamformers on
38 
he test sets of real data. The acoustic model is a DNN-HMM discrimina-

ively trained with the sMBR criterion ( Vesely et al., 2013 ). The input

f the DNN-HMM is a 440-dimensional feature vector extracted from

hannel 5, consisting of a 40-dimensional fMLLR ( Gales, 1998 ) with an

1-frame expansion. The language models are 5-gram with Kneser-Ney

KN) smoothing ( Kenser and Ney, 1995 ) for the first-pass decoding and

he simple RNN-based language model ( Mikolov et al., 2010 ) for rescor-

ng. 

For the CGMM-based beamforming, the multi-channel STFT coeffi-

ients are extracted from the test speech at a 16 kHz sampling frequency

sing a Hanning window of length 512 and shift of 256, resulting in

57 frequency bins. We studied the CHiME-4 baseline BeamformerIt

or comparison in which the multichannel covariance matrix of noise

s estimated from 400 ms to 800 ms of context immediately before the

est utterance, and then the speech signal is estimated by time-varying

inimum variance distortionless response (MVDR) beamforming with

iagonal loading ( Mestre and Lagunas, 2003 ). 

Before moving to the next subsection, we would like to note that

ome microphones were found to be obstructed during the recording

f the CHiME-4 data. Using signals from such microphones would de-

rade the beamforming performance. To circumvent this issue, the ob-

tructed microphones are excluded from beamforming. The process to

etermine whether a microphone is obstructed is as follows. A set of

ross-correlation functions ( Vu et al., 2015 ) over the J microphone sig-

als and the average cross-correlation are first computed. Then, a mi-

rophone is determined to be an obstructed microphone if its cross-

orrelation value (with other microphones) is lower than a threshold

. Empirically, the value of 𝜂 is set to 0.2. 

Table 1 presents the word error rate (WER) comparison of differ-

nt beamformers averaged on the test sets of RealData. In this table,

CH5 ” denotes the recognition of original speech from channel 5. “IRM ”

s the single-channel speech enhancement approach using our DNN-

RM model with the channel 5 data as the input. “BeamformIt ” is the

HiME-4 officially provided beamformer ( Mestre and Lagunas, 2003 ).

e list the result in Nugraha et al. (2016) as a reference by using DNN-

ased multi-channel speech enhancement approach mentioned above.

CGMM w/o CS ” is our implemented version without channel selec-

ion mentioned above. “CGMM ” is our implemented version with chan-

el selection while Higuchi et al. (2016) denotes the published result

f CGMM in the original paper with more powerful CNN-HMMs than

HiME-4 officially provided DNN-HMMs. Higuchi et al. (2016) does

ot give the corresponding performance using DNN-HMMs. “IME ” is

ur proposed iterative mask estimation approach, and more detailed ex-

erimental results are shown in the following subsections. Please note

hat in Table 1 , all systems use the same acoustic and language mod-

ls except Nugraha et al. (2016) and Higuchi et al. (2016) . Although

ugraha et al. (2016) uses different backend settings, CHiME-3 chal-

enge results ( Barker et al., 2017 ) confirmed that the CGMM approach

utperformed all the other deep learning based multi-channel speech

nhancement approaches in the submitted systems. So it is convincing

o conclude that our proposed IME is the best beamformer among all

he approaches in Table 1 . 

.2. Experiments on IME-based beamformer 

Next, we study our proposed iterative mask estimation approach for

mproving the CGMM-based method by leveraging NN-based IRM and

SR-based VAD. 

.2.1. NN-based IRM 

We now investigate the impacts of both DNN-based and LSTM-based

RM estimation on the recognition performance. The DNN and LSTM

rchitectures are shown in Fig. 3 . The activation functions of the hidden

nd output layers are sigmoid units. For fine-tuning of the DNN, the

earning rate is set to 0.01 for 50 epochs, and the mini-batch size is

28. For fine-tuning of the LSTM, the learning rate is set to 0.001 for 50
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Table 1 

WER (%) comparison of different beamformers averaged on the test sets of RealData. 

CH5 IRM BeamformIt Nugraha et al. (2016) CGMM w/o CS CGMM Higuchi et al. (2016) IME 

AVG 23.47 22.96 11.82 10.14 9.56 8.54 8.37 5.96 

Table 2 

WER (%) comparison among the CGMM-based beamforming 

and the improved versions by incorporating the NN-based IRM 

on the test sets of RealData. 

Test Data BUS CAF PED STR AVG 

CGMM 13.24 8.12 6.67 6.03 8.54 

DNN-1 9.32 5.96 5.83 5.93 6.76 

DNN-2 9.52 5.86 5.92 5.72 6.75 

LSTM-1 9.58 5.87 5.96 5.54 6.73 

LSTM-2 9.52 5.92 5.89 5.64 6.74 

NN-based Ensemble 9.42 5.76 5.78 5.45 6.60 

Table 3 

WER (%) comparison among different approaches to 

combine the mask estimations from the CGMM and NN- 

based IRM on the test sets of RealData. 

Test Data BUS CAF PED STR AVG 

DNN-CGMM 14.02 8.96 7.13 6.43 9.13 

+ DNN-1 10.03 6.22 6.14 5.96 7.09 
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Table 4 

WER (%) comparison of different beamformers by incorporat- 

ing the ASR-based VAD on the test sets of RealData. 

Test Data BUS CAF PED STR AVG 

CGMM 13.24 8.12 6.67 6.03 8.54 

+ VAD-1 10.94 8.29 6.11 5.42 7.69 

+ VAD-2 10.89 8.33 5.88 5.28 7.59 

+ Oracle VAD 10.66 8.19 5.72 5.20 7.44 

DNN-1 9.63 5.98 5.85 5.62 6.77 

+ VAD-1 7.80 5.75 5.42 5.64 6.15 

+ VAD-2 7.72 5.68 5.39 5.56 6.08 

NN-based Ensemble 9.42 5.76 5.78 5.45 6.60 

+ VAD-1 7.38 5.77 5.57 5.58 6.08 

+ VAD-2 7.37 5.83 5.33 5.32 5.96 

CH0 5.07 5.02 5.27 6.48 5.46 
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pochs, and the mini-batch size is set to 128. The input features for both

re globally normalized to zero mean and unit variance. In the training

tage, only the simulation data are adopted with the input/output pairs

f channel 5 speech and the corresponding IRMs. 

Table 2 lists the WER comparison among the CGMM-based beam-

ormer and its improved versions by incorporating the NN-based IRM

n the test sets of RealData. “DNN-1 ” and “DNN-2 ” denote the itera-

ive mask estimation in the first and second iterations, respectively. The

esults for the corresponding LSTM versions are denoted by “LSTM-1 ”

nd “LSTM-2 ”. Several observations can be made from the results. First,

he DNN-based approach (DNN-1 and DNN-2) achieves consistent and

ignificant improvements in recognition performance over the CGMM-

ased method, yielding an average relative WER reduction of 20.7%

cross all test sets for DNN-1. For BUS and CAF environments with lower

ERs, the relative WER reductions are 27.3% and 26.4%, respectively,

hich demonstrates the effectiveness of NN-based mask estimation for

SR in adverse environments. Second, the performance is saturated after

ne iteration for both the DNN and LSTM (DNN-1 vs. DNN-2, LSTM-1 vs.

STM-2). Finally, although the LSTM-based approach generates an av-

rage WER similar to that of the DNN-based approach, the ensemble of

NN-1 and LSTM-1 provides an additional 2% relative WER reduction.

his result shows the complementarity of different architectures. 

Table 3 lists the WER comparison among different approaches to

ombine the mask estimations from the CGMM and NN-based IRM on

he test sets of RealData. “DNN-CGMM ” denotes the CGMM-based beam-

orming with the initialized DNN-based IRM estimation from channel 5.

+DNN-1 ” denotes our IME approach using the DNN-based IRM based

n the “DNN-CGMM ” system in the first iteration. The recognition per-

ormance of “DNN-CGMM ” shown in the first line of Table 3 is clearly

orse than that of the conventional CGMM-based beamforming initial-

zed as ( Higuchi et al., 2016 ) shown in the first line of Table 2 , which

emonstrates that the DNN-IRM estimated from the original channel 5 is

ot accurate enough to improve the CGMM-based beamforming. More-

ver, the significant improvements of “+DNN-1 ” over “DNN-CGMM ”

emonstrate the effectiveness of the proposed IME approach. 
39 
.2.2. ASR-based VAD 

In this subsection, the segmentation results of the speech recognizer

ased on the beamformed speech are used as the VAD information to im-

rove the estimated mask. The recognizer is the same as in the previous

xperiment. Table 4 shows the WER comparison of different beamform-

rs by incorporating the ASR-based VAD on the test sets of RealData.

here are three blocks of results, with each consisting of three rows and

enoting one system to incorporate the VAD information. The first block

orresponds to the iterative mask estimation with the CGMM-based sys-

em via Eq. (14) , while the second and third blocks represent the itera-

ive mask estimation with the CGMM-based and NN-based systems via

q. (15) . For all three baseline systems (CGMM, DNN-1, and NN-based

nsemble), the ASR-based VAD for iterative mask estimation yields sig-

ificant and stable recognition performance gains across all test sets of

ealData, with average relative WER reductions of 11.1%, 10.2%, and

.7% after the second iterations (+VAD-2), which demonstrates the

trong complementarity with both CGMM-based and NN-based mask

stimation. One interesting observation is for the VAD-based iterative

ask estimation: the second iteration (+VAD-2) can always slightly

mprove the recognition performance over the first iteration (+VAD-

), which is different from that of the NN-based mask estimation shown

n Table 2 . For example, an average relative WER reduction of 2% is

chieved for the NN-based ensemble system. Overall, compared with the

GMM-based method (the first row of Table 4 ), our iterative mask esti-

ation approach using both NN-based IRM and ASR-based VAD (the last

ow of Table 4 ) achieves an average relative WER reduction of 30.2%.

inally, “Oracle VAD ” denotes that the ASR-based VAD information is

btained by force-alignment results of the channel 0 data. The results

f “Oracle VAD ” are slightly better than those of VAD-2, which demon-

trates that the VAD information based on recognition results is suffi-

iently accurate for IME-based beamforming. 

Fig. 6 plots the spectrograms with the recognition results of an ut-

erance from the test set of RealData (F05_442C020Y_BUS_REAL) using

ifferent beamformers. Fig. 6 (a) and (b) present the recognition of the

riginal speech from channel 0 and channel 5, respectively. The recog-

ition results of channel 0 as a close-talking microphone were 100% cor-

ect, whereas the recognition error rate of channel 5 is approximately

0% because of background BUS noises. The CGMM-based approach

ramatically reduced the stationary noises, as shown by the spectro-

rams in Fig. 6 (b) and (c). However, there are still three parts of substitu-

ion/insertion/deletion errors due to the existence of non-stationary and

esidual noises. With the NN-based IRM plus ASR-based VAD informa-

ion [ Fig. 6 (d) and (e)], the recognition error is gradually reduced to 0.
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Fig. 6. Spectrograms with the recognition results of an utterance from the test set of RealData (F05_442C020Y_BUS_REAL) using different beamformers. 
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Table 5 

WER (%) results of data augmentation for the DNN-HMM acoustic 

model on the test sets of RealData. 

Training Data Test Data BUS CAF PED STR AVG 

CH5 CGMM 13.24 8.12 6.67 6.03 8.54 

IME 7.37 5.83 5.33 5.32 5.96 

CH13456 CGMM 8.39 6.56 5.36 5.30 6.40 

IME 5.76 4.46 3.81 4.80 4.71 

CH13456 CGMM 9.18 5.77 4.35 4.58 5.97 

+ Beamformed IME 5.12 3.90 3.50 4.61 4.28 
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Table 6 

The settings of different DCNN-HMMs. 

Acoustic Model Input Feature Kernel Size 

DCNN1-HMM LMFB 3 × 3 

DCNN2-HMM LMFB 3 × 5 

DCNN3-HMM fMLLR 3 × 3 

DCNN4-HMM fMLLR 3 × 5 

Table 7 

WER (%) comparison with different acoustic models (AMs) and lan- 

guage models (LMs) on the test sets of RealData. 

Test LM/AM BUS CAF PED STR AVG 

CGMM RNN/DNN-HMM 9.18 5.77 4.35 4.58 5.97 

RNN/Ensemble 6.06 4.15 3.46 3.29 4.24 

LSTM/Ensemble 4.86 2.97 2.49 2.69 3.25 

IME RNN/DNN-HMM 5.12 3.90 3.50 4.61 4.28 

RNN/Ensemble 4.04 2.95 2.82 3.19 3.25 

LSTM/Ensemble 2.67 2.09 1.73 2.51 2.25 
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o  
lthough the spectrograms in Fig. 6 (c)–(e) are not “sounded ” or “seen ”

uite different, the reduction of non-stationary and residual noises in

he key regions plays an important role in the recognition process. Thus,

lthough the spectrogram in Fig. 6 (e) is not very “clean ”, the recogni-

ion result is correct due to the multi-condition training of the acoustic

odel. 

.3. Experiments on robustness of IME 

In this section, we focus on the impacts of powerful acoustic and

anguage models on the IME approach. 

.3.1. Training data augmentation 

In contrast to the DNN-HMM in Sections 5.1 and 5.2 where only

MLLR features were used as input, the input feature vector for the

ata augmentation experiments consists of 42-dimensional LMFB, 40-

imensional fMLLR, and 20-dimensional i-vector ( Tu et al., 2016 ).

or both LMFB and fMLLR, the first-order and second-order deriva-

ives with 9-frame expansion are adopted, yielding a 2234-dimensional

2234 = 42 ∗ 3 ∗ 9 + 40 ∗ 3 ∗ 9 + 20) feature vector fed to the in-

ut layer of the DNN. We use 7 hidden layers with 2048 nodes for each

ayer and 1965 nodes for the output layer. Other configurations follow

he Kaldi setup officially provided in Vincent et al. (2016) . 

Table 5 lists the WER results of data augmentation for the DNN-

MM acoustic model on the test sets of RealData. “CH5 ” is the sys-

em using only channel-5 data for training which is the same setting as

n Table 4 . And the “IME ” corresponds to the best setting in Table 4 ,

amely “NN-based Ensemble+VAD-2 ”. “CH13456 ” represents the data

ugmentation by using all channels of the original noisy speech ex-

ept channel 2 while “CH13456+Beamformed ” includes additionally

GMM-based beamformed speech data. Several observations could be

ade. First, data augmentation can significantly improve the recog-

ition performance when the training set is not large, e.g., a dozen

ours of speech data. For CGMM-based beamformer, “CH13456 ” using

-fold training data compared with “CH5 ” yields an average relative

ER reduction of 25.1% while “CH13456+Beamformed ” with addi-

ional beamformed data achieves an average relative WER reduction of

.7% over “CH13456 ”. The complementarity between noisy speech and

eamformed speech might be explained as that the beamforming can

ntroduce some distortions although it can improve the SNR of speech

ignals. Second, for data augmentation, our proposed IME approach

ields average relative WER reductions of 26.4% and 28.3% over the

GMM-based approach for “CH13456 ” and “CH13456+Beamformed ”,

espectively. These improvements are quite consistent with the average

elative WER reduction of 30.2% in “CH5 ” system without data augmen-

ation, which indicates that our proposed beamforming approach is still

ery effective when combined with enhanced acoustic modeling using

ata augmentation. 

.3.2. The ensemble of DNN-HMM and DCNN-HMMs 

For DCNN-HMMs, four models are built with different settings of

nput features and kernel sizes, as shown in Table 6 . The learning rate

f DCNN training is set to 0.002, and the batch size is 2048. The model

onsists of the input layer, 4 blocks with different sizes of feature maps,
41 
ne FC layer and the softmax output layer. For each block, there are four

onvolution layers, a ReLU layer, a batch normalization (BN) layer and

 max-pooling layer. Table 7 shows the WER comparison with different

coustic models on the test sets of RealData. 

The complementarity of different input features and neural network

rchitectures is well validated by the acoustic model fusion at the state

evel. With the best ensemble of one DNN-HMM and four DCNN-HMMs

isted in Table 6 for acoustic modeling and RNN for language modeling,

ur proposed IME approach still achieved a significant WER reduction

f 23.3% relative to the CGMM-based approach. 

.3.3. LSTM-based LMs 

In this subsection, we examine the impact of LSTM-based language

odels. Table 7 presents the WER comparison between CGMM and IME

ith different language models on the test sets of RealData. Clearly,

STM-based LMs generate much better results than the officially pro-

ided simple RNN-based LM. With the best configured ensemble acous-

ic model and LSTM-based language model, IME yields an average rel-

tive WER reduction of 30.8% over CGMM, which is a quite consistent

mprovement compared with previous experiments. 

. Conclusion 

In this paper, we have proposed a simple and effective IME frame-

ork to precisely estimate the mask in an iterative manner from dif-

erent pieces of complementary information sources with comprehen-

ive and promising results on a state-of-the-art ASR challenge corpus.

ME is a general framework to fully utilize the advantages of conven-

ional beamforming (e.g., CGMM which can make use of the online

patial information), the purely deep learning based enhancement (e.g.

NN/LSTM IRM which can well learn the interactions between speech

nd noise from a large data set), and ASR feedbacks (e.g., VAD) to de-

ign a better beamformer. This is highly motivated from the experiences

n previous CHiME challenges, namely both spatial beamforming (e.g.,

GMM) and purely deep learning based multi-channel approach have

bvious limitations. In the future, we can improve IME further by lever-

ging upon better spatial beamforming approaches, better deep learning

lgorithms for IRM estimation, and more informative feedback from the

SR systems. For example, in this study we only use DNN and unidi-

ectional LSTM to estimate IRM as it is possible to develop the online

ersion of IME ( Tu et al., 2018 ). Without considering the latency and

omputational complexity, we will explore the BLSTM and CNN to fur-

her improve the performance. Furthermore, deep integration among

ifferent information sources will be investigated by designing the new

bjective functions for joint learning. And we will explore how to in-
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