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Microphone arrays are typically used in room acoustic environments to acquire high fidelity audio

and speech signals while suppressing noise, interference, and reverberation. In many application

scenarios, interference and reverberation may mainly come from a certain region, and it is therefore

necessary to develop beamformers that can preserve signals of interest while minimizing the power

of signals coming from the region where interference and reverberation dominate. For this purpose,

this paper first reexamines the so-called front-to-back ratio and the classical supercardioid beam-

former. To deal with the white noise amplification problem and the limited directivity factor associ-

ated with the supercardioid beamformer, a set of reduced-rank beamformers are deduced by using

the well-known joint diagonalization technique, which can make compromises between the front-

to-back ratio and the amount of white noise amplification or the directivity factor. Then, the defini-

tion of the front-to-back ratio is extended to a generalized version, from which another set of

reduced-rank beamformers and their regularized versions are developed. Simulations are conducted

to illustrate the properties and advantages of the proposed beamformers.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5082548
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I. INTRODUCTION

Beamforming with microphone arrays has attracted much

attention recently due to its wide range of applications, such

as hands-free voice communications and human-machine

interfaces (Brandstein and Ward, 2001; Benesty et al., 2008;

Benesty et al., 2017). Many beamforming algorithms were

developed in the literature such as the delay-and-sum (DS)

beamformer (Schelkunoff, 1943), broadband beamformers

based narrowband decomposition (Doclo and Moonen, 2003;

Benesty et al., 2007; Capon, 1969; Frost, 1972) and nested

arrays (Zheng et al., 2004; Kellermann, 1991; Elko and

Meyer, 2008), modal beamformers (Torres et al., 2012; Yan

et al., 2011; Koyama et al., 2016; Park and Rafaely, 2005),

superdirective beamformers (Cox et al., 1986; Kates, 1993;

Wang et al., 2014), and differential beamformers with differ-

ential microphone arrays (DMAs) (Elko, 2000; Elko and

Meyer, 2008; Chen et al., 2014; Pan et al., 2015b;

Abhayapala and Gupta, 2010; Weinberger et al., 1933; Olson,

1946; Sessler and West, 1971; Warren and Thompson, 2006).

Among these, differential beamformers are now widely used

in a wide spectrum of small devices such as smart speakers,

smartphones, and robotics, primarily because they exhibit

frequency-invariant beampatterns and can achieve high direc-

tivity factors (DFs) with small apertures.

The basic principle of DMAs can be traced back to the

1930s when directional ribbon microphones were developed

(Weinberger et al., 1933; Olson, 1946). Since then, much

effort has been devoted to the design and study of DMAs

from different perspectives. For example, the cascaded

method was investigated to design different orders of DMAs

with different beampatterns (such as the cardioid, dipole,

supercardioid, hypercardioid, etc.) (Elko, 2000; Elko and

Meyer, 2008; Abhayapala and Gupta, 2010). Theoretical

analysis of the principle of the DMA by gradient analysis

were carried out in Kolund�zija et al. (2011). The perfor-

mance of the first-order DMAs was investigated under sen-

sor imperfection in Buck (2002). The DF and the model for

deviation of the DMAs were analyzed in the frequency

domain in Buck and R€oßler (2001). Adaptive first- and

second-order DMAs were proposed in Teutsch and Elko

(2001) for attenuating interference moving in the rear-half

plane of the array, which was then analyzed in Elko and

Meyer (2009) and Elko et al. (1996) also. Several kinds of

steerable DMAs were developed and analyzed in Elko and

Pong (1997), Derkx and Janse (2009), and Huang et al.
(2017). In Ihle (2003), Benesty et al. (2012), and Song and

Liu (2008), DMAs were studied from the perspectives of

power spectral density estimation and noise reduction,

respectively. Different ways of designing higher-order

DMAs are presented in Sena et al. (2012) and Abhayapala

and Gupta (2010). Recently, a so-called null-constrained

method was developed in the frequency domain (Benesty

and Chen, 2012; Benesty et al., 2015; Chen et al., 2014),
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which enables the design of DMAs by using the distortion-

less and null constraints. With this method, a minimum-

norm solution can be derived to improve the white noise

gain (WNG) by exploiting the redundancy provided by using

more microphones, thereby circumventing the problem of

white noise amplification (Benesty and Chen, 2012; Chen

et al., 2014). A series expansion based approach to DMA

design is presented in Zhao et al. (2014) and Pan et al.
(2015a). Now, DMAs have been widely used in a wide range

of applications such as hearing aids Slavin (1987), smart-

speakers, bluetooth headphones, in-car navigation systems,

etc.

The DF and WNG are two popular performance mea-

sures used for designing and evaluating differential beam-

formers. These two measures, however, do not take into

account source and interference distribution information. In

many typical application scenarios, the source of interest

may be confined in one region while interference sources

and strong reflection paths are distributed in another region.

For example, a television is placed against a wall and a

microphone array is placed in front of a TV. In this case, the

source of interest is incident from the front half of the plane

while interference from TV loudspeakers is from the back

half of the plane. In such situations, it is desirable to design

beamformers that can preserve signals of interest while mini-

mizing the power of signals coming from the region where

interference and reverberation dominate. For this purpose,

we revisit the definition of the so-called front-to-back ratio

(FBR) and present a generalized FBR (GFBR), based on

which a number of differential beamformers are deduced.

The major contributions are as follows. (1) From the FBR,

the classical supercardioid beamformer is deduced, which

achieves maximum FBR with almost frequency-invariant

beampattern. But this beamformer suffers from the problem

of white noise amplification, which is particularly serious at

low frequencies, and its DF is limited also. (2) To overcome

the drawbacks of the supercardioid beamformer, a set of

reduced-rank beamformers and their regularized version are

developed from the WNG and DF maximization perspec-

tives, respectively, using the well-known joint diagonaliza-

tion technique. These beamformers can compromise

between the FBR and WNG or DF flexibly by adjusting the

algorithmic parameters. (3) The definition of the FBR is

extended to GFBR. (4) Based on GFBR, another set of

reduced-rank beamformers and its regularized version are

developed. Simulations are conducted to illustrate the prop-

erties and advantages of the proposed beamformers.

The remainder of the paper is organized as follows. The

signal model and problem formulation are presented in Sec.

II. Section III defines some useful performance measures

and introduces some traditional fixed beamformers. The joint

diagonalization is briefly described in Sec. IV. Section V

deduces the supercardioid beamformer, two kinds of

reduced-rank beamformers, and one regularized version. The

FBR is generalized to GFBR, and two other reduced-rank

beamformers and another regularized version are developed

in Sec. VI. Simulations are conducted in Sec. VII and con-

clusions are drawn in Sec. VIII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a farfield plane wave that propagates in an

anechoic acoustic environment at the speed of sound, i.e.,

c¼ 340 m/s, and impinges on a uniform linear sensor array

consisting of M omnidirectional microphones, where the inter-

element spacing is equal to d. Denote by h the incidence angle.

In this context, the steering vector of length M is given by

dðx; hÞ ¼ ½1 e�|xs0 cos h � � � e�|ðM�1Þxs0 cos h �T ; (1)

where the superscript T is the transpose operator, | ¼
ffiffiffiffiffiffiffi
�1
p

is

the imaginary unit, x¼ 2pf is the angular frequency, f> 0 is

the temporal frequency, and s0¼ d/c is the time delay

between two successive sensors at the angle h¼ 0.

In this study, we consider fixed directional beamformers

with small values of d, like in differential (Elko and Meyer,

2008; Elko, 2000; Benesty and Chen, 2012) or superdirective

(Cox et al., 1986; Cox et al., 1987) beamforming, where the

main lobe is at the angle h¼ 0 (endfire direction) and it is

assumed that the desired signal propagates also from this angle.

Since the source is assumed to propagate from the angle h¼ 0,

the signals observed by the microphone array are given by

yðxÞ ¼ Y1ðxÞY2ðxÞ � � � YMðxÞ½ �T

¼ xðxÞ þ vðxÞ
¼ dðx; 0ÞXðxÞ þ vðxÞ; (2)

where YmðxÞ is the mth microphone signal, xðxÞ
¼ dðx; 0ÞXðxÞ; XðxÞ is the zero-mean desired signal,

dðx; 0Þ is the signal propagation vector (also steering vector

at h¼ 0), and vðxÞ is the zero-mean additive noise signal

vector, which is defined similarly to yðxÞ. The desired signal

and additive noise are assumed to be uncorrelated with each

other. The beamformer output is then (Benesty et al., 2008)

ZðxÞ ¼ hHðxÞyðxÞ
¼ hHðxÞdðx; 0ÞXðxÞ þ hHðxÞvðxÞ; (3)

where ZðxÞ is the estimate of the desired signal, XðxÞ,

hðxÞ ¼ H1ðxÞH2ðxÞ � � � HMðxÞ½ �T (4)

is a complex-valued linear filter applied to the observation

signal vector, yðxÞ, and the superscripts * and H denote

complex-conjugate and conjugate-transpose, respectively. In

our context, the distortionless constraint is desired, i.e.,

hHðxÞdðx; 0Þ ¼ 1: (5)

Then, the objective of this work is to design beamformers, i.e.,

to find optimal beamforming filters, hðxÞ, with a uniform lin-

ear array (ULA) based on the maximization of the FBR or its

generalized version subject to the constraint given in Eq. (5).

III. PERFORMANCE MEASURES

Before discussing how to design different beamformers,

let us first present a few performance measures, which have
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been intensively investigated in the literature and are effi-

cient for evaluating the performance of beamformers.

The first important measure, which describes the sensi-

tivity of the beamformer to a plane wave impinging on the

array from the direction h, is the beampattern. It is given by

B hðxÞ; h½ � ¼ dHðx; hÞhðxÞ

¼
XM

m¼1

HmðxÞe|ðm�1Þxs0 cos h: (6)

Plotting the magnitude of B½hðxÞ; h� as a function of h gives

us much information about the performance of the beam-

former, hðxÞ, including the beamwidth (the range between

the first nulls on each side of the main lobe), the sidelobe

level, etc. Generally, the narrower the beamwidth and the

lower the sidelobe level, the better is the performance of the

beamformer. Also, plotting the magnitude of B½hðxÞ; h� with

respect to x indicates how well the beamformer preserves

the fidelity of a wideband signal.

Some beamformers are sensitive to the array imperfec-

tions, such as microphones’ self-noise, nonuniform

responses among the microphones, imprecisions of the

microphone positions, etc. One way to evaluate this is

through the so-called WNG, which is defined as

W h xð Þ½ � ¼ jh
H xð Þd x; 0ð Þj2

hH xð Þh xð Þ
: (7)

It should be noted that W½hðxÞ� < 1 means that the white

noise is amplified. It can be verified that this gain is maxi-

mized with the classical DS beamformer

hDS xð Þ ¼ d x; 0ð Þ
M

; (8)

and the maximum WNG is given by

Wmax ¼ W hDSðxÞ½ � ¼ M; (9)

which is frequency independent.

Another important measure, which quantifies how the

microphone array performs in the spherically isotropic (dif-

fuse) noise field is the DF, which is defined as

D h xð Þ½ � ¼ jB h xð Þ; 0½ �j2
1

2

ðp

0

jB h xð Þ; h½ �j2 sin hdh

¼ jhH xð Þd x; 0ð Þj2

hH xð ÞC0;p xð Þh xð Þ
; (10)

where

C0;p xð Þ ¼ 1

2

ðp

0

d x; hð ÞdH x; hð Þsin hdh: (11)

Actually, in the spherically isotropic noise field, a more gen-

eral definition is

Cw1;w2
ðxÞ ¼ N w1;w2

ðw2

w1

dðx; hÞdHðx; hÞ sin hdh; (12)

where

N w1;w2
¼ 1ðw2

w1

sin hdh

¼ 1

cos w1 � cos w2

: (13)

It can easily be verified that

Cw1;w2
xð Þ

� �
ij
¼N w1;w2

� e|x j�ið Þs0 cosw1 � e|x j�ið Þs0 cosw2

|x j� ið Þs0

; (14)

with ½Cw1;w2
ðxÞ�mm ¼ 1; m ¼ 1; 2;…;M. Accordingly, the

elements of the M�M matrix C0;pðxÞ are (Benesty and

Chen, 2012)

C0;p xð Þ
� �

ij
¼ sin x j� ið Þs0½ �

x j� ið Þs0

¼ sinc x j� ið Þs0½ �; (15)

with ½C0;pðxÞ�mm ¼ 1; m ¼ 1; 2;…;M. One can check that

the DF is maximized with the classical superdirective beam-

former (which coincides with the hypercardioid beamformer

of order M � 1) (Cox et al., 1986; Cox et al., 1987),

hS xð Þ ¼
C�1

0;p xð Þd x; 0ð Þ
dH x; 0ð ÞC�1

0;p xð Þd x; 0ð Þ
(16)

and the maximum DF is given by

DmaxðxÞ ¼ D hSðxÞ½ �
¼ dHðx; 0ÞC�1

0;pðxÞdðx; 0Þ; (17)

which is frequency dependent. It can be shown that (Uzkov,

1946)

lim
d!0
DmaxðxÞ ¼ M2; 8x; (18)

which is referred as the supergain in the literature. This gain can

be achieved but at the expense of white noise amplification.

The last measure that we discuss in this section is the

FBR, which is defined as the ratio of the power of the output

of the array to signals propagating from the front-half plane

to the output power for signals arriving from the rear-half

plane (Marshall and Harry, 1941). This ratio, for the spheri-

cally isotropic noise field, is mathematically defined as

(Marshall and Harry, 1941)

F h xð Þ½ � ¼

ðp=2

0

jB h xð Þ; h½ �j2 sin hdhðp

p=2

jB h xð Þ; h½ �j2 sin hdh

¼
hH xð ÞC0;p=2 xð Þh xð Þ
hH xð ÞCp=2;p xð Þh xð Þ

; (19)

where
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C0;p=2 xð Þ
� �

ij
¼ e|x j�ið Þs0 � 1

|x j� ið Þs0

(20)

and

Cp=2;p xð Þ
� �

ij
¼ 1� e�|x j�ið Þs0

|x j� ið Þs0

; (21)

with ½C0;p=2ðxÞ�mm ¼ ½Cp=2;pðxÞ�mm ¼ 1; m ¼ 1; 2;…;M
according to Eq. (14). The FBR measure was studied in the

existing literature, but only for designing the supercardioid

beamformer.

We conclude this section with an obvious relationship

between the DF and FBR. Indeed, we can write the DF as

D h xð Þ½ � ¼ 2jhH xð Þd x; 0ð Þj2

hH xð Þ C0;p=2 xð Þ þ Cp=2;p xð Þ
� �

h xð Þ

¼ 2D0 h xð Þ½ �
1þ F h xð Þ½ � ; (22)

where

D0 h xð Þ½ � ¼ jhH xð Þd x; 0ð Þj2

hH xð ÞCp=2;p xð Þh xð Þ
: (23)

We see that maximizing D0½hðxÞ� is equivalent to minimiz-

ing the energy of the diffuse noise at the back of the beam-

pattern subject to the distortionless constraint. Therefore,

D0½hðxÞ� can also be a very useful measure.

IV. JOINT DIAGONALIZATION

Joint diagonalization is a useful tool to derive different

kinds of compromising beamformers or filters.

Let us assume that Cp=2;pðxÞ is a full-rank matrix, which

should be true in principle. Then, the two Hermitian matrices

C0;p=2ðxÞ and Cp=2;pðxÞ can be, indeed, jointly diagonalized

as follows (Franklin, 1968):

THðxÞC0;p=2ðxÞTðxÞ ¼ KðxÞ; (24)

THðxÞCp=2;pðxÞTðxÞ ¼ IM; (25)

where

TðxÞ ¼ t1ðxÞ t2ðxÞ � � � tMðxÞ½ � (26)

is a full-rank square matrix (of size M�M), but not neces-

sarily orthogonal, and

KðxÞ ¼ diag k1ðxÞ; k2ðxÞ;…; kMðxÞ½ � (27)

is a diagonal matrix whose main elements are real and non-

negative. Furthermore, KðxÞ and TðxÞ are the eigenvalue and

eigenvector matrices, respectively, of C�1
p=2;pðxÞC0;p=2ðxÞ,

i.e.,

C�1
p=2;pðxÞC0;p=2ðxÞTðxÞ ¼ TðxÞKðxÞ: (28)

It is assumed that the eigenvalues of C�1
p=2;pðxÞC0;p=2ðxÞ are

ordered as k1ðxÞ � k2ðxÞ � � � � � kMðxÞ � 0. Therefore,

the corresponding eigenvectors are t1ðxÞ; t2ðxÞ;…; tMðxÞ.

V. BEAMFORMERS FROM AN FBR MAXIMIZATION
PERSPECTIVE

In this section, we discuss several differential beam-

formers, which are derived directly from the FBR in tandem

with joint diagonalization of the Hermitian matrices that are

contained in this measure.

A. Maximum FBR

In Eq. (19), we recognize the generalized Rayleigh quo-

tient (Golub and Loan, 1996). It is well known that this quo-

tient is maximized with the eigenvector corresponding to the

maximum eigenvalue of C�1
p=2;pðxÞC0;p=2ðxÞ. Therefore, the

maximum FBR beamformer is

hmFBRðxÞ ¼ aðxÞt1ðxÞ; (29)

where aðxÞ 6¼ 0 is an arbitrary complex number. We deduce

that

F hmFBRðxÞ½ � ¼ k1ðxÞ: (30)

Clearly, we always have

F hmFBRðxÞ½ � � F hðxÞ½ �; 8hðxÞ: (31)

B. Supercardioid

In practice, it is important to properly choose the value

of aðxÞ. The most obvious thing to do is to find this parame-

ter in such a way that the maximum FBR beamformer is dis-

tortionless. Substituting Eq. (29) in Eq. (5), we get

a xð Þ ¼ 1

dH x; 0ð Þt1 xð Þ
: (32)

Substituting Eq. (32) in Eq. (29), we obtain the supercardioid

beamformer of order M � 1,

hSC xð Þ ¼ t1 xð Þ
dH x; 0ð Þt1 xð Þ

: (33)

C. Reduced rank

In this subsection, we consider beamformers that have

the form

hQðxÞ ¼ T1:QðxÞg1:QðxÞ; (34)

where

T1:QðxÞ ¼ t1ðxÞ t2ðxÞ � � � tQðxÞ
� �

(35)

is a matrix of size M�Q, with 1 � Q � M, and

g1:QðxÞ ¼ G1ðxÞG2ðxÞ � � � GQðxÞ
� �T 6¼ 0 (36)

is a vector of length Q. In this case, we can express FBR as
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F hQ xð Þ
� �

¼
hH

Q xð ÞC0;p=2 xð ÞhQ xð Þ
hH

Q xð ÞCp=2;p xð ÞhQ xð Þ

¼
gH

1:Q xð ÞK1:Q xð Þg1:Q xð Þ
gH

1:Q xð Þg1:Q xð Þ
¼ F g1:Q xð Þ

� �
; (37)

where

K1:QðxÞ ¼ diag k1ðxÞ; k2ðxÞ;…; kQðxÞ
� �

: (38)

It can be shown that

F g1:1ðxÞ
� �

� F g1:2ðxÞ
� �

� � � � � F g1:MðxÞ
� �

: (39)

With the filter given in Eq. (34), we can also write the

WNG as

W hQ xð Þ
� �

¼
jhH

Q xð Þd x; 0ð Þj2

hH
Q xð ÞhQ xð Þ

¼
jgH

1:Q xð ÞTH
1:Q xð Þd x; 0ð Þj2

gH
1:Q xð ÞTH

1:Q xð ÞT1:Q xð Þg1:Q xð Þ
¼ W g1:Q xð Þ

� �
: (40)

Now, our goal is to maximize Eq. (40). This is equivalent to

ming1:QðxÞg
H
1:QðxÞTH

1:QðxÞT1:QðxÞg1:QðxÞ
subject to gH

1:QðxÞTH
1:QðxÞdðx; 0Þ ¼ 1; (41)

whose solution is

g1:Q xð Þ ¼
TH

1:Q xð ÞT1:Q xð Þ
h i�1

TH
1:Q xð Þd x; 0ð Þ

dH x; 0ð ÞP1;1:Q xð Þd x; 0ð Þ
; (42)

where

P1;1:QðxÞ ¼ T1:QðxÞ TH
1:QðxÞT1:QðxÞ

h i�1

TH
1:QðxÞ (43)

is a projection matrix of rank Q. As a result, the reduced-

rank beamformer is

hQ;RR xð Þ ¼ P1;1:Q xð Þd x; 0ð Þ
dH x; 0ð ÞP1;1:Q xð Þd x; 0ð Þ

: (44)

For Q¼ 1, we get

h1;RRðxÞ ¼ hSCðxÞ; (45)

which is the supercardioid beamformer, and for Q¼M, we

obtain

hM;RR xð Þ ¼ d x; 0ð Þ
dH x; 0ð Þd x; 0ð Þ

; (46)

which corresponds to the DS beamformer obtained from the

maximization ofW½hðxÞ� defined in Eq. (7).

We can also exploit the joint diagonalization in the defi-

nition of the DF in Eq. (22), which can be expressed with

hQðxÞ as

D hQ xð Þ
� �

¼
2jgH

1:Q xð ÞTH
1:Q xð Þd x; 0ð Þj2

gH
1:Q xð Þ K1:Q xð Þ þ IQ

� �
g1:Q xð Þ

¼ D gQ xð Þ
� �

; (47)

where IQ is the Q�Q identity matrix. Maximizing Eq. (47)

is equivalent to

ming1:QðxÞg
H
1:QðxÞ K1:QðxÞ þ IQ

� �
g1:QðxÞ

subject to gH
1:QðxÞTH

1:QðxÞdðx; 0Þ ¼ 1; (48)

from which it is not difficult to find our second reduced-rank

beamformer

hQ;RR2 xð Þ ¼ P2;1:Q xð Þd x; 0ð Þ
dH x; 0ð ÞP2;1:Q xð Þd x; 0ð Þ

; (49)

where

P2;1:QðxÞ ¼ T1:QðxÞ K1:QðxÞ þ IQ

� ��1
TH

1:QðxÞ: (50)

Now, for Q¼ 1, we get the supercardioid beamformer, i.e.,

h1;RR2ðxÞ ¼ hSCðxÞ, and for Q¼M, we get the superdirec-

tive (hypercardioid) beamformer, i.e., hM;RR2ðxÞ ¼ hSðxÞ.
Therefore, with this approach, we can obtain interesting

beamformers with performance between those of the super-

cardioid and the hypercardioid beamformers. It can be veri-

fied that (see the Appendix)

F h1;RR2ðxÞ
� �

� F h2;RR2ðxÞ
� �

� � � � � F hM;RR2ðxÞ
� �

; (51)

D h1;RR2ðxÞ
� �

� D h2;RR2ðxÞ
� �

� � � � � D hM;RR2ðxÞ
� �

: (52)

Now, let us consider a regularized version of hQ;RR2ðxÞ, i.e.,

hQ;RR2;� xð Þ ¼ P3;1:Q xð Þd x; 0ð Þ
dH x; 0ð ÞP3;1:Q xð Þd x; 0ð Þ

; (53)

where

P3;1:QðxÞ ¼ T1:QðxÞ K1:QðxÞ þ �IQ

� ��1
TH

1:QðxÞ; (54)

and � � 0 is the regularization parameter. It can be shown

(see the Appendix) that F½hQ;RR2;�ðxÞ� is a decreasing func-

tion of Q, and an increasing function of � [the upper bound is

k1ðxÞ]. Then, D½hQ;RR2;�ðxÞ� is an increasing function of Q,

and a decreasing function of �. We observe that the particular

case of Q¼M and �¼1 corresponds to the beamformer

obtained from the maximization of D0½hðxÞ� in Eq. (23), i.e.,

hM;RR2;1 xð Þ ¼
C�1

p=2;p xð Þd x; 0ð Þ
dH x; 0ð ÞC�1

p=2;p xð Þd x; 0ð Þ
: (55)
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VI. GENERALIZATION

Here, we expand the definition of the FBR and separate

the front from the back by some angle w. A more general

definition of the FBR, named generalized FBR in this paper,

is then

Fw h xð Þ½ � ¼ hH xð ÞC0;w xð Þh xð Þ
hH xð ÞCw;p xð Þh xð Þ

; (56)

where

C0;wðxÞ ¼ N 0;w

ðw

0

dðx; hÞdHðx; hÞ sin hdh; (57)

Cw;pðxÞ ¼ N w;p

ðp

w
dðx; hÞdHðx; hÞ sin hdh: (58)

A definition similar to Eq. (56) was presented in Sena et al.
(2012) and Sena et al. (2011), but the optimization and

implementation are done in a very much different way.

Using Eq. (56), we can write the DF as

D h xð Þ½ � ¼
2N 0;wN w;pD0w h xð Þ½ �
N 0;w þN w;pFw h xð Þ½ � ; (59)

where

D0w h xð Þ½ � ¼ jhH xð Þd x; 0ð Þj2

hH xð ÞCw;p xð Þh xð Þ
: (60)

We can jointly diagonalize the two Hermitian matrices

C0;wðxÞ and Cw;pðxÞ as

TH
wðxÞC0;wðxÞTwðxÞ ¼ KwðxÞ; (61)

TH
wðxÞCw;pðxÞTwðxÞ ¼ IM; (62)

where

TwðxÞ ¼ tw;1ðxÞ tw;2ðxÞ � � � tw;MðxÞ
� �

(63)

and

KwðxÞ ¼ diag kw;1ðxÞ; kw;2ðxÞ;…; kw;MðxÞ
� �

(64)

FIG. 1. (Color online) Beampatterns of the supercardioid beamformer,

hSCðxÞ, for different orders: (a) first-order, (b) second-order, (c) third-order,

and (d) fourth-order. Conditions: d¼ 1.0 cm and f¼ 1 kHz.

FIG. 2. Beampatterns of the third-order supercardioid beamformer, hSCðxÞ,
versus frequency. Conditions: M¼ 4 and d¼ 1.0 cm.

FIG. 3. Performance of the supercardioid beamformer, hSCðxÞ, versus fre-

quency for different orders: (a) DF, (b) WNG, and (c) FBR. Conditions:

d¼ 1.0 cm.
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are the eigenvector and eigenvalue matrices of C�1
w;pðxÞC0;wðxÞ,

respectively, and organized similarly to KðxÞ and TðxÞ. So, we

have

TH
w xð ÞC0;p xð ÞTw xð Þ ¼ 1

2N 0;w
Kw xð Þ þ 1

2N w;p
IM:

(65)

Following the same steps as in Sec. V C, we can find a more

general reduced-rank filter,

hQ;w xð Þ ¼ P4;1:Q xð Þd x; 0ð Þ
dH x; 0ð ÞP4;1:Q xð Þd x; 0ð Þ

; (66)

where

P4;1:QðxÞ ¼ Tw;1:QðxÞ

� TH
w;1:QðxÞTw;1:QðxÞ

h i�1

TH
w;1:QðxÞ;

(67)

and Tw;1:QðxÞ is defined in a similar way to T1:QðxÞ. For

Q¼ 1, we get

h1;w xð Þ ¼ tw;1 xð Þ
dH x; 0ð Þtw;1 xð Þ

; (68)

which is the beamformer obtained from maximization of

Fw½hðxÞ�.
From the maximization of the DF in (59), we can derive

another reduced-rank filter,

hQ;2;w xð Þ ¼ P5;1:Q xð Þd x; 0ð Þ
dH x; 0ð ÞP5;1:Q xð Þd x; 0ð Þ

; (69)

where

P5;1:Q xð Þ ¼ Tw;1:Q xð Þ

� 1

N 0;w
Kw;1:Q xð Þ þ 1

N w;p
IQ

� ��1

TH
w;1:Q xð Þ;

(70)

and Kw;1:QðxÞ is defined analogously to K1:QðxÞ. It can be

verified that (see the Appendix)

F h1;2;wðxÞ
� �

� F h2;2;wðxÞ
� �

� � � � � F hM;2;wðxÞ
� �

; (71)

D h1;2;wðxÞ
� �

� D h2;2;wðxÞ
� �

� � � � � D hM;2;wðxÞ
� �

: (72)

We can also construct a regularized version of hQ;2;wðxÞ,
i.e.,

FIG. 4. (Color online) Beampatterns of the beamformer hQ;RRðxÞ for differ-

ent values of Q: (a) Q¼ 1, (b) Q¼ 2, (c) Q¼ 3, (d) Q¼ 4, (e) Q¼ 5, and (f)

Q¼ 6. Conditions: M¼ 6, d¼ 1.0 cm, and f¼ 1 kHz.

FIG. 5. Performance of the beamformer hQ;RRðxÞ versus frequency for dif-

ferent values of Q: (a) DF, (b) WNG, and (c) FBR. Conditions: M¼ 6 and

d¼ 1.0 cm.
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hQ;2;w;� xð Þ ¼ P6;1:Q xð Þd x; 0ð Þ
dH x; 0ð ÞP6;1:Q xð Þd x; 0ð Þ

; (73)

where

P6;1:Q xð Þ ¼ Tw;1:Q xð Þ

� 1

N 0;w
Kw;1:Q xð Þ þ �

N w;p
IQ

� ��1

TH
w;1:Q xð Þ:

(74)

The relations between D½hQ;2;w;�ðxÞ�; Fw½hQ;2;w;�ðxÞ�, and Q

and � are similar to those with the beamformer hQ;RR2;�ðxÞ.
The particular case of Q¼M and �¼1 corresponds to

the beamformer obtained from maximization of D0w½hðxÞ� in
Eq. (60), i.e.,

hM;2;w;1 xð Þ ¼
C�1

w;p xð Þd x; 0ð Þ
dH x; 0ð ÞC�1

w;p xð Þd x; 0ð Þ
: (75)

VII. SIMULATIONS

In this section, the performance of the proposed beam-

formers are evaluated in terms of beampattern, WNG, DF,

and FBR/GFBR.

A. Performance of the supercardioid beamformer

First, we investigate the performance of the supercardi-

oid beamformer. Figure 1 plots the beampatterns of this

FIG. 6. (Color online) Beampatterns of the beamformer hQ;RR2ðxÞ for dif-

ferent values of Q: (a) Q¼ 1, (b) Q¼ 2, (c) Q¼ 3, (d) Q¼ 4, (e) Q¼ 5, and

(f) Q¼ 6. Conditions: M¼ 6, d¼ 1.0 cm, and f¼ 1 kHz.

FIG. 7. Performance of the beamformer hQ;RR2ðxÞ versus frequency for dif-

ferent values of Q: (a) DF, (b) WNG, and (c) FBR. Conditions: M¼ 6 and

d¼ 1.0 cm.

FIG. 8. (Color online) Beampatterns of the beamformer hQ;RR2;�ðxÞ for dif-

ferent values of �: (a) �¼ 100, (b) �¼ 102, (c) �¼ 104, and (d) �¼ 106.

Conditions: M¼ 6, Q¼ 6, d¼ 1.0 cm, and f¼ 1 kHz.
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beamformer for different orders at f¼ 1 kHz. Figure 2 plots

the beampatterns of the third-order supercardioid beam-

former versus frequency. As can be seen, the obtained beam-

patterns are almost frequency invariant, except at very low

frequencies (f< 150 Hz) due to numerical problems. The

DF, WNG, and FBR of the supercardioid beamformer versus

frequency for different orders are plotted in Fig. 3. One can

see from this figure that the DF and FBR increase with the

order, while the WNG decreases. Even though the supercar-

dioid beamformer can achieve maximum FBR, it suffers

from white noise amplification (very low WNG), and its DF

is also limited, which motivated us to develop the hQ;RRðxÞ
and hQ;RR2ðxÞ beamformers.

FIG. 9. Performance of the beamformer hQ;RR2;�ðxÞ versus frequency for

different values of �: (a) DF, (b) WNG, and (c) FBR. Conditions: M¼ 6,

Q¼ 6, and d¼ 1.0 cm.

FIG. 10. (Color online) Beampatterns of the beamformer hQ;wðxÞ with

different values of w: (a) w ¼ 30�, (b) w ¼ 60�, (c) w ¼ 90�, and (d)

w ¼ 120�. Conditions: M¼ 4, Q¼ 1, d¼ 1.0 cm, and f¼ 1 kHz.

FIG. 11. Beampatterns of the beamformer hQ;wðxÞ versus frequency.

Conditions: M¼ 4, w ¼ 60�, Q¼ 1, and d¼ 1.0 cm.

FIG. 12. Performance of the beamformer hQ;wðxÞ with different values of

w: (a) DF, (b) WNG, and (c) GFBR. Conditions: M¼ 4, Q¼ 1, and

d¼ 1.0 cm.
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B. Performance of the reduced-rank beamformers

In this subsection, the performance of the beamformer

hQ;RRðxÞ is investigated. We consider a ULA with M¼ 6

and d¼ 1.0 cm. Figure 4 plots the beampatterns of hQ;RRðxÞ
for f¼ 1 kHz and different values of Q. As we can see, the

beampatterns of this beamformer vary significantly with Q.

The beamwidth increases with the value of Q. When Q¼ 1,

we obtain the beampattern of the fifth-order supercardioid

beamformer, while when Q¼ 6, we get the beampattern of

the DS beamformer. The DF, WNG, and FBR of hQ;RRðxÞ
as a function of frequency for different values of Q are plot-

ted in Fig. 5. The beamformer hQ;RRðxÞ achieves the maxi-

mum FBR and high DF when Q¼ 1, but it suffers from

white noise amplification in this case, which is particularly

serious at low frequencies. When Q¼ 6, however, it obtains

the maximum WNG, but the FBR and DF are limited. From

Fig. 5, one can see that the WNG of the beamformer

hQ;RRðxÞ increases while the DF and FBR decrease with the

value of Q, which should be expected due to the form of

hQ;RRðxÞ in Eq. (34), except for some disturbances of the

DF and FBR at high frequencies. Clearly, the beamformer

hQ;RRðxÞ can achieve some tradeoff between the DF, FBR,

and WNG by adjusting the value of Q.

Next, we examine the performance of the beamformer

hQ;RR2ðxÞ. Again, a ULA with M¼ 6 and d¼ 1.0 cm is con-

sidered. The beampatterns of hQ;RR2ðxÞ are plotted in Fig. 6

for f¼ 1 kHz and different values of Q. As can be seen, the

beampatterns of this beamformer vary greatly with Q also.

The beamwidth decreases with the increase of Q. When

Q¼ 1 and 6, we get the beampatterns of the fifth-order

supercardioid beamformer and classical superdirective

beamformer (fifth-order hypercardioid), respectively. Figure

7 plots the DF, WNG, and FBR of hQ;RR2ðxÞ versus fre-

quency for different values of Q. The WNG and FBR of

hQ;RR2ðxÞ decrease with the increase of the value of Q, while

the DF increases, which is consistent with the analysis,

except for some disturbances of the FBR at low frequencies

due to some numerical problems. Some of the curves are

very close to each other, since the performances of the beam-

former hQ;RR2ðxÞ when Q � 4 are similar for the given

microphone array, which can also be observed from the

beampatterns in Fig. 6. The beampatterns of hQ;RR2;�ðxÞ are

plotted in Fig. 8 for Q¼ 6, f¼ 1 kHz, and different values of

�. Obviously, when �¼ 1, we have the beampattern of the

classical superdirective beamformer, and when �¼ 106, the

obtained beampattern is very close to that of the fifth-order

supercardioid beamformer. Figure 9 plots the DF, WNG, and

FBR of hQ;RR2;�ðxÞ versus frequency for Q¼ 6 and different

FIG. 13. (Color online) Beampatterns of the beamformer hQ;wðxÞ for differ-

ent values of Q: (a) Q¼ 1, (b) Q¼ 2, (c) Q¼ 3, (d) Q¼ 4, (e) Q¼ 5, and (f)

Q¼ 6. Conditions: M¼ 6, w ¼ 60�, d¼ 1.0 cm, and f¼ 1 kHz.

FIG. 14. (Color online) Beampatterns of the beamformer hQ;2;wðxÞ for dif-

ferent values of Q: (a) Q¼ 1, (b) Q¼ 2, (c) Q¼ 3, (d) Q¼ 4, (e) Q¼ 5, and

(f) Q¼ 6. Conditions: M¼ 6, w ¼ 120�, d¼ 1.0 cm, and f¼ 1 kHz.
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values of �. As can be seen, the WNG and FBR increase

with �, while the DF decreases, which is consistent with the

analysis, except for the FBR at low frequency bands.

C. Performance of the beamformers derived from
GFBR

Now, we consider a ULA with M¼ 4 and d¼ 1.0 cm.

The beampatterns of hQ;wðxÞ for Q¼ 1, f¼ 1 kHz, and dif-

ferent values of w are plotted in Fig. 10. As seen, the beam-

width of the beampattern increases with the value of w.

Accordingly, the beamwidth of the designed beampattern

can be controlled by adjusting the value of w indirectly. It

should be noted that for the given microphone array with

M¼ 4 and d¼ 1 cm, the beamwidth of the designed beam-

pattern cannot be very narrow, even when w! 0�, due to

the small aperture of the array. As the value of w increases,

the beamwidth of h1;wðxÞ gradually approaches to 2w. The

beampatterns of h1;wðxÞ versus frequency for w ¼ 60� are

presented in Fig. 11. It can be seen that the obtained beam-

patterns are almost frequency invariant. The DF, WNG, and

GFBR of h1;wðxÞ versus frequency for different values of w
are plotted in Fig. 12. We observe that the DF decreases

with the increase of the value of w. This is reasonable since

the larger is the beamwidth, the smaller is the DF. The val-

ues of WNG and GFBR increase with the value of w.

Then, a ULA with M¼ 6 and d¼ 1.0 cm is considered.

Figures 13 and 14 plot the beampatterns of hQ;wðxÞ ðw
¼ 60�Þ and hQ;2;wðxÞ ðw ¼ 120�Þ, respectively, for f¼ 1 kHz

and different values of Q. The beamwidth of hQ;wðxÞ
increases while the beamwidth of hQ;2;wðxÞ decreases as the

value of Q increases. The DF, WNG, and GFBR of hQ;wðxÞ

FIG. 15. Performance of the beamformer hQ;wðxÞ versus frequency for dif-

ferent values of Q: (a) DF, (b) WNG, and (c) GFBR. Conditions: M¼ 6,

w ¼ 60�, and d¼ 1.0 cm.

FIG. 16. Performance of the beamformer hQ;2;wðxÞ versus frequency for dif-

ferent values of Q: (a) DF, (b) WNG, and (c) GFBR. Conditions: M¼ 6,

w ¼ 120�, and d¼ 1.0 cm.

FIG. 17. Floor layout of the simulation: the size of the room is 5 m� 4 m

�3 m (length�width� height), the microphone array consists of six micro-

phones, which are placed, respectively, at (0.50: 0.02: 0.60, 2.0, 1.5), a loud-

speaker is placed at (4.0, 2.0, 1.5) is to simulate the source of interest, and

four loudspeakers are placed at (0.3, 1.7: 0.2: 2.3, 1.5) to simulate interfer-

ence sources.
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and hQ;2;wðxÞ as a function of frequency for different values

of Q are plotted in Figs. 15 and 16, respectively. The trends

of the DF, WNG, and GFBR versus the parameter Q agree

well with the analysis, except for some disturbances at low

frequencies due to numerical problems. It is clearly seen that

these developed beamformers facilitate tradeoffs among the

DF, WNG, and GFBR by adjusting the value of Q.

D. Performance in simulated reverberant room
environments

Finally, the performance of the developed beamformers

are evaluated in room acoustic environments simulated with

the widely used image model (Allen and Berkley, 1979;

Lehmanna and Johansson, 2008). The size of the simulated

room is 5 m� 4 m� 3 m (length�width� height). For con-

venience of exposition, we denote the position in the room

as (x, y, z) with reference to a corner in a Cartesian coordi-

nate system. A microphone array consisting of six omnidi-

rectional microphones is used and the positions of the six

microphones are at (0.50: 0.02: 0.60, 2.0, 1.5) as illustrated

in Fig. 17. A loudspeaker, playing back a pre-recorded

speech signal, is placed at (4.0, 2.0, 1.5) to simulate a source

of interest. Four loudspeakers (e.g., from the sound bar of a

television) placed at (0.3, 1.7: 0.2: 2.3, 1.5) are used to

simulate interference sources. The room impulse responses

(RIRs) from every loudspeaker to the six microphones are

generated with the image model method (Allen and Berkley,

1979; Lehmanna and Johansson, 2008). The reflection coef-

ficients of all the six walls at set to 0.35 and the correspond-

ing reverberation time T60, i.e., the time for the sound to die

away to a level 60 decibels below its original level, which is

measured by the Schroeder’s method (Schroeder, 1965), is

approximately 100 ms. The output signals of the micro-

phones are generated by convolving the source signal (pre-

recorded with a sampling rate of 16 kHz from a female

speaker in a quiet environment) with the RIRs from the posi-

tion of the source of interest to the array of microphones,

and then adding either spatially and temporally white

Gaussian noise or interference signals (generated by con-

volving another pre-recorded clean speech signal or white

Gaussian noise with the RIRs from the positions of the four

interference loudspeakers to the array of microphones).

Based on the previous simulations, we investigate and

compare the following beamformers: the fifth-order super-

cardiord beamformer hSCðxÞ, the fifth-order superdirective

beamformer hSðxÞ, and the reduced-rank beamformer

hQ;wðxÞ with three cases, i.e., Q¼ 1 and w ¼ 120�, Q¼ 2

and w ¼ 120�, and Q¼ 3 and w ¼ 120�. During implemen-

tation, the matrix Cw;pðxÞ is diagonally loaded with 10�5IM

for numerical stability where IM is an identity matrix of size

M�M. The beampatterns at 1 kHz of these beamformers are

plotted in Fig. 18. The values of the DF of these five beam-

formers, which are computed at 1 kHz, are listed in Table I.

Besides the beampattern and DF, we also investigate the

array performance in the presence of white Gaussian noise,

interference, and reverberation. We divide the RIRs into two

parts: direct path and reflections, based on which we defined

three metrics, i.e., the direct-path-signal-to-noise ratio

(DSNR), the direct-path-signal-to-interference ratio (DSIR),

FIG. 18. (Color online) Beampatterns at 1 kHz of (a) the fifth-order hSCðxÞ,
(b) the fifth-order hSðxÞ, (c) hQ;wðxÞ with Q¼ 1 and w ¼ 120�, (d) hQ;wðxÞ
with Q ¼ 2 and w ¼ 120�, and (e) hQ;wðxÞ with with Q¼ 3 and w ¼ 120�.

TABLE I. The DF values of the five compared beamformers (computed at

1 kHz).

hQ;wðxÞ with w ¼ 120�

Beamformers hSCðxÞ hSðxÞ Q¼ 1 Q¼ 2 Q¼ 3

DF 8.34 dB 9.78 dB 7.43 dB 7.23 dB 5.02 dB

TABLE II. Performance of different beamformers. Conditions:

T60	 100 ms, M¼ 6 and d¼ 2.0 cm, the input DSNR, DSIR, and DSRR are,

respectively, 10, 0, and 1.2 dB.

Output performance (in dB)

Beamformer DSIRa DSIRb DSRR DSNR

hSCðxÞ 20.12 18.49 5.86 1.25

hSðxÞ 16.19 13.02 9.49 �12.54

hQ;wðxÞ; Q ¼ 1; w ¼ 120� 23.05 21.68 5.10 1.91

hQ;wðxÞ; Q ¼ 2; w ¼ 120� 19.68 16.03 4.58 11.06

hQ;wðxÞ; Q ¼ 3; w ¼ 120� 18.44 14.40 4.48 15.58

aThe case with the interference generated using a white Gaussian noise

signal.
bThe case with the interference generated using a speech signal.
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direct-path-signal-to-reverberation ratio (DSRR). The input

DSNR and DSIR in this simulation are set to 10 and 0 dB,

respectively. The input DSRR for our simulation setup is

approximately 1.2 dB. To compute the output DSNR, DSIR,

and DSRR, we first divide the array output signals into frames

with a frame size of 256 samples (16-ms long) and an overlap

factor of 75%. The Kaiser window is applied to each frame to

deal with the frequency aliasing problem. Then, a 256-point fast

Fourier transform (FFT) is applied to the windowed signal frame

to transform the array signal into the short-time Fourier trans-

form (STFT) domain. In every STFT subband, a beamformer

filter is designed and applied to the array signals. The inverse

STFT (ISTFT) and overlap-add method are used to convert the

processed signals back to the time domain. We finally compute

the output DSNR, DSIR, and DSRR. We consider two cases. In

the first one, the interference signals are generated by convolv-

ing a white Gaussian noise signal with the RIRs from the four

interference loudspeakers to the microphones. In the second

case, the interference signals are generated by convolving a

speech signal (different from the source one) with the RIRs

from the four interference loudspeakers to the microphones. The

results of this case are summarized in Table II.

It is clearly seen from Table II the advantage of the

reduced rank beamformers.

VIII. CONCLUSIONS

Exploiting the performance measures FBR and GFBR,

we derived several kinds of beamformers, i.e., hSCðxÞ;
hQ;RRðxÞ; hQ;RR2ðxÞ; hQ;RR2;�ðxÞ; hQ;wðxÞ; hQ;2;wðxÞ, and

hQ;2;w;�ðxÞ. The beamformers hSCðxÞ and h1;wðxÞ maximize

the FBR and GFBR, respectively, and have almost frequency-

invariant beampatterns. The beamwidth of the beamformer

h1;wðxÞ can be changed by adjusting the value of w. The other

beamformers enable us to compromise between the FBR/

GFBR and WNG or DF by adjusting the values of the param-

eters Q and/or �. The DS and classical superdirective beam-

formers are particular cases of the proposed framework.
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APPENDIX

D hQ;2;w;�ð Þ ¼
dH 0ð ÞTw;1:Q

1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:Qd 0ð Þ

" #2

dH 0ð ÞTw;1:Q
1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:QC0;pTw;1:Q

1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:Qd 0ð Þ

¼ dH 0ð ÞTw;1:Q
1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:Qd 0ð Þ; (A1)

Fw hQ;2;w;�ð Þ ¼
dH 0ð ÞTw;1:Q

1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:QC0;wTw;1:Q

1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:Qd 0ð Þ

dH 0ð ÞTw;1:Q
1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:QCw;pTw;1:Q

1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:Qd 0ð Þ

¼
dH 0ð ÞTw;1:Q

1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

Kw;1:Q
1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:Qd 0ð Þ

dH 0ð ÞTw;1:Q
1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

IQ
1

N 0;w
Kw;1:Q þ

�

N w;p
IQ

� ��1

TH
w;1:Qd 0ð Þ

: (A2)

Substituting Eq. (73) into Eq. (10), we obtain Eq. (A1) (where the parameter x is removed for concision), which can be

rewritten as

D hQ;2;w;� xð Þ
� �

¼
XQ

i¼1

kw;i xð Þ
N 0;w

þ �

N w;p

" #�1

jdH x; 0ð Þtw;i xð Þj2: (A3)

It is obvious that D½hQ;2;w;�ðxÞ� is an increasing function of Q, and a decreasing function of �. Substituting Eq. (73) into Eq.

(56), we obtain Eq. (A2) (where the parameter x is removed also for concision), which can be simplified as
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Fw hQ;2;w;� xð Þ
� �

¼

XQ

i¼1

kw;i xð Þ
kw;i xð Þ
N 0;w

þ �

N w;p

" #2
jdH x; 0ð Þtw;i xð Þj2

XQ

i¼1

1

kw;i xð Þ
N 0;w

þ �

N w;p

" #2
jdH x; 0ð Þtw;i xð Þj2

: (A4)

We can see that Fw½hQ;2;w;�ðxÞ� is a decreasing function of

the parameter Q. Differentiating Eq. (A4) with respect to �,
it can be found that Fw½hQ;2;w;�ðxÞ� is an increasing function

of the parameter �, except for the case of Q¼ 1.

Though it increases with the value of � for Q � 2, the

GFBR is always upper bounded by the maximum eigen-

value, kw;1ðxÞ, of the matrix C�1
w;pðxÞC0;wðxÞ, which can be

verified by

lim
�!1
Fw hQ;2;w;� xð Þ
� �

¼

XQ

i¼1

kw;i xð ÞjdH x; 0ð Þtw;i xð Þj2

XQ

i¼1

jdH x; 0ð Þtw;i xð Þj2

� kw;1 xð Þ: (A5)

Abhayapala, T. D., and Gupta, A. (2010). “Higher order differential-integral

microphone arrays,” J. Acoust. Soc. Am. 127, 227–233.

Allen, J. B., and Berkley, D. A. (1979). “Image method for efficiently simu-

lating small-room acoustics,” J. Acoust. Soc. Am. 65(4), 943–950.

Benesty, J., and Chen, J. (2012). Study and Design of Differential
Microphone Arrays (Springer-Verlag, Berlin).

Benesty, J., Chen, J., and Cohen, I. (2015). Design of Circular Differential
Microphone Arrays (Springer-Verlag, Switzerland).

Benesty, J., Chen, J., and Huang, Y. (2008). Microphone Array Signal
Processing (Springer-Verlag, Berlin).

Benesty, J., Chen, J., Huang, Y., and Dmochowski, J. (2007). “On

microphone-array beamforming from a MIMO acoustic signal processing

perspective,” IEEE Trans. Audio Speech Lang. Process. 15(3),

1053–1065.

Benesty, J., Cohen, I., and Chen, J. (2017). Fundamentals of Signal
Enhancement and Array Signal Processing (IEEE, Piscataway).

Benesty, J., Souden, M., and Huang, Y. A. (2012). “A perspective on differ-

ential microphone arrays in the context of noise reduction,” IEEE Trans.

Audio Speech Lang. Process. 20(2), 699–704.

Brandstein, M., and Ward, D. B. (2001). Microphone Arrays: Signal
Processing Techniques and Applications (Springer-Verlag, Berlin).

Buck, M. (2002). “Aspects of first-order differential microphone arrays in

the presence of sensor imperfections,” Eur. Trans. Telecomm. 13,

115–122.

Buck, M., and R€oßler, M. (2001). “First order differential microphone arrays

for automotive applications,” in Proceedings of IWAENC, Vol. 1.

Capon, J. (1969). “High resolution frequency-wavenumber spectrum analy-

sis,” Proc. IEEE 57(8), 1408–1418.

Chen, J., Benesty, J., and Pan, C. (2014). “On the design and implementa-

tion of linear differential microphone arrays,” J. Acoust. Soc. Am. 136,

3097–3113.

Cox, H., Zeskind, R., and Owen, M. (1987). “Robust adaptive

beamforming,” IEEE Trans. Acoust. Speech Sign. Process. 35(10),

1365–13764.

Cox, H., Zeskind, R. M., and Kooij, T. (1986). “Practical supergain,” IEEE

Trans. Acoust. Speech Sign. Process. ASSP-34(3), 393–398.

Derkx, R. M. M., and Janse, K. (2009). “Theoretical analysis of a first-order

azimuth-steerable superdirective microphone array,” IEEE Trans. Audio

Speech Lang. Process. 17(1), 150–162.

Doclo, S., and Moonen, M. (2003). “Design of broadband beamformers

robust against gain and phase errors in the microphone array character-

istics,” IEEE Trans. Signal Process. 51(10), 2511–2526.

Elko, G. W. (2000). “Superdirectional microphone arrays,” in Acoustic
Signal Processing for Telecommunicationg, edited by S. L. Gay and J.

Benesty (Kluwer Academic, Boston), pp. 181–237.

Elko, G. W., Kubli, R. A., Morgan, D. R., and West, J. E. (1996).

“Adjustable filter for differential microphones,” U.S. patent 5,586,191.

Elko, G. W., and Meyer, J. (2008). “Microphone arrays,” in Springer
Handbook of Speech Processing, edited by J. Benesty, M. M. Sondhi, and

Y. Huang (Springer-Verlag, Berlin), pp. 1021–1041.

Elko, G. W., and Meyer, J. (2009). “Second-order differential adaptive

microphone array,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 73–76.

Elko, G. W., and Pong, A. T. N. (1997). “A steerable and variable first-order

differential micropone array,” in Proceedings of IEEE ICASSP, IEEE,

Vol. 1, pp. 223–226.

Franklin, J. N. (1968). Matrix Theory (Prentice-Hall, Englewood Cliffs, NJ).

Frost, O. L. (1972). “An algorithm for linearly constrained adaptive array

processing,” Proc. IEEE 60(8), 926–935.

Golub, G. H., and Loan, C. F. V. (1996). Matrix Computations (The Johns

Hopkins University Press, Baltimore).

Huang, G., Benesty, J., and Chen, J. (2017). “On the design of frequency-

invariant beampatterns with uniform circular microphone arrays,” IEEE

Trans. Audio Speech Lang. Process. 25(5), 1140–1153.

Ihle, M. (2003). “Differential microphone arrays for spectral subtraction,” in

Proceedings of IEEE Workshop Acoustic Echo Noise Control (IWAENC).
Kates, J. M. (1993). “Superdirective arrays for hearing aids,” J. Acoust. Soc.

Am. 94(4), 1930–1933.

Kellermann, W. (1991). “A self-steering digital microphone array,” in

Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 3581–3584.

Kolund�zija, M., Faller, C., and Vetterli, M. (2011). “Spatiotemporal

gradient analysis of differential microphone arrays,” J. Audio Eng. Soc.

59(1/2), 20–28.

Koyama, S., Furuya, K., Wakayama, K., Shimauchi, S., and Saruwatari, H.

(2016). “Analytical approach to transforming filter design for sound field

recording and reproduction using circular arrays with a spherical baffle,”

J. Acoust. Soc. Am. 139(3), 1024–1036.

Lehmanna, E. A., and Johansson, A. M. (2008). “Prediction of energy decay

in room impulse responses simulated with an image-source model,”

J. Acoust. Soc. Am. 124(1), 269–277.

Marshall, R. N., and Harry, W. R. (1941). “A new microphone providing

uniform directivity over an extended frequency range,” J. Acoust. Soc.

Am. 12, 481–497.

Olson, H. F. (1946). “Gradient microphones,” J. Acoust. Soc. Am. 17(3),

192–198.

Pan, C., Benesty, J., and Chen, J. (2015a). “Design of robust differential

microphone arrays with orthogonal polynomials,” J. Acoust. Soc. Am.

138(2), 1079–1089.

Pan, C., Chen, J., and Benesty, J. (2015b). “Theoretical analysis of differen-

tial microphone array beamforming and an improved solution,” IEEE

Trans. Audio Speech Lang. Process. 23, 2093–2105.

Park, M., and Rafaely, B. (2005). “Sound-field analysis by plane-wave

decomposition using spherical microphone array,” J. Acoust. Soc. Am.

118(5), 3094–3103.

J. Acoust. Soc. Am. 144 (6), December 2018 Wang et al. 3463

https://doi.org/10.1121/1.3402341
https://doi.org/10.1121/1.382599
https://doi.org/10.1109/TASL.2006.885251
https://doi.org/10.1109/TASL.2011.2163396
https://doi.org/10.1109/TASL.2011.2163396
https://doi.org/10.1002/ett.4460130206
https://doi.org/10.1109/PROC.1969.7278
https://doi.org/10.1121/1.4898429
https://doi.org/10.1109/TASSP.1987.1165054
https://doi.org/10.1109/TASSP.1986.1164847
https://doi.org/10.1109/TASSP.1986.1164847
https://doi.org/10.1109/TASL.2008.2006583
https://doi.org/10.1109/TASL.2008.2006583
https://doi.org/10.1109/TSP.2003.816885
https://doi.org/10.1109/PROC.1972.8817
https://doi.org/10.1109/TASLP.2017.2689681
https://doi.org/10.1109/TASLP.2017.2689681
https://doi.org/10.1121/1.407515
https://doi.org/10.1121/1.407515
https://doi.org/10.1121/1.4942590
https://doi.org/10.1121/1.2936367
https://doi.org/10.1121/1.1916128
https://doi.org/10.1121/1.1916128
https://doi.org/10.1121/1.1916315
https://doi.org/10.1121/1.4927690
https://doi.org/10.1109/TASLP.2015.2469142
https://doi.org/10.1109/TASLP.2015.2469142
https://doi.org/10.1121/1.2063108


Schelkunoff, S. A. (1943). “A mathematical theory of linear arrays,” Bell

Syst. Tech. J. 22(1), 80–107.

Schroeder, M. R. (1965). “New method for measuring reverberation time,”

J. Acoust. Soc. Am. 37, 409–412.
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